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ABSTRACT

We describe a secure distributed virtual conferencing application (SDVC) that provides
high quality streaming video and audio using IP multicast for efficient distribution, using
strong authentication via cryptographic means and optionally providing fully encrypted
communication without sacrificing quality of the medium or the user experience. We
summarize our experiences with SDVC in a recent live demonstration and conclude with
a discussion of future plans.

January 25, 1999

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



Secure Distributed Virtual Conferencing: Multicast or Bust

W.A. Adamson
C.J. Antonelli
K.W. Coffman
P. McDaniel

J. Rees

INTRODUCTION

The Secure Distributed Virtual Conferencing
(SDVC) project, developed at the Center for
Information Technology Integration in partner-
ship with the University Corporation for
Advanced Internet Development (UCAID), is a
vehicle to advance UCAID processes while
highlighting Internet2 capabilities and features.
A first step toward fully virtual meetings, SDVC
broadens access and participation to Internet2
events and activities.

SDVC also addresses UCAID’s objective of
establishing a middleware infrastructure that
reduces the barriers to building and deploying
portable, interoperable, scalable, and secure
applications. These infrastructures need to be
universally available, not just to select applica-
tions.

The initial goal demonstrated here is to
integrate technologies that provide high quality
streaming video and audio with strong authentica-
tion and encryption, without sacrificing quality of
the medium or the user experience.

Our model assumes a single source for video
and audio and multiple receivers that form a mul-
ticast group. SDVC assumes that all members of
the group can send and receive packets over the
multicast address.

Project Goals

Goals of the SDVC project include:

g Single source. SDVC and its predecessor,
vic, assume a single video source and multi-
ple participants. While vic supports H.261
traffic between all participants it does not
meet our goal of providing secure encrypted
group communication for a single video
source.

g Multicast. Single-server multiple-client dis-
tributed applications do not scale well as the
number of clients increases. Conventional

wisdom dictates that a virtual conferencing
application based on multicast can alleviate
server performance bottlenecks.

g Middleware. Security, naming, and reliable
group protocols naturally occupy the
middleware landscape. Implemented there,
these protocols free applications and platform
operating systems from dealing with these
issues in machine-specific ways.

g MPEG-1. We chose MPEG-1 over MPEG-2
because of its relative simplicity, availability
of high-performance freely available software
decoders, and the availability of relatively
inexpensive hardware encoders.

g Software solutions. We chose to perform
encryption, decryption, and MPEG-1 decod-
ing in software to make our solution ubiqui-
tous and independent of specialized hardware.

g Open source. Given the widely distributed
nature of Internet2, we prefer to share and use
freely available code wherever possible.

PROJECT OVERVIEW

The Secure Distributed Video Conferencing
(SDVC) application is an extension of the Secure
Video Conferencing (SVC) work [1] demon-
strated at the Internet2 Member Meeting held
October 1997. SVC, based on vic [2], the
popular MBONE videoconferencing tool, pro-
vides authenticated, encrypted, full frame video
delivered over a unicast channel.

SDVC extends this work by adding protocols
for secure multiparty group communications,
MPEG-1 encoding and decoding capabilities, and
Globus [3] GSS API and SSLeay libraries for
security context initialization. SDVC also adds all
these capabilities to vat [4], the MBONE audio
tool.

All participants use the same data encryption
key for the video and audio streams. When a new
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participant joins the group, or when a heartbeat
detects that a participant has left the group,
SDVC generates and distributes a new data
encryption key to the participants. This assures
that only active members of the group can see and
hear the video and audio streams.

For group establishment and maintenance,
SDVC uses Lightweight Secure Group Communi-
cations (LSGC) [5]. LSGC employs three proto-
col layers; reliable broadcast, process group
management, and security services. The reliable
broadcast layer ensures ordered and atomic recep-
tion of group messages. The process group
management layer provides all processes with a
consistent view of group membership. The secu-
rity services layer provides facilities for ensuring
secrecy, integrity, and freshness of the group
communication.

The architecture is shown in Figure 1, where
the dotted line indicates Globus unicast communi-
cation, two-way LSGC multicast is shown by the
dashed arrows, and one-way video multicast is
shown by the solid arrows.

IP
multicast

vic
LSGC server

vic
LSGC client

vic
LSGC client

unicast

. . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1: SDVC Architecture

There is a natural tension among security and
scalability. Security comes at a cost, and that cost
includes maintaining state among participants,
which grows with higher levels of security and
the number of participants in a group. Our
approach starts with a high level of security.
After evaluating scalability, we will relax security
only where necessary to extend the limits of sca-
lability, for example by retaining the same data
encryption key throughout a session to avoid
redistributing a new key each time a participant
joins or leaves the group. This may be acceptable
security depending on the circumstances. Our
experience has shown that it is easier to relax
existing security than to add security where there

is too little.

CITI replaced the Leighton-Micali key distri-
bution algorithm [6] in the original implementa-
tion of LSGC with Globus’ GSS API SSLeay key
exchange. We also enhanced LSGC’s DES
encryption with SVC’s multiple choices for
ciphers, retaining the ability to change ciphers on
the fly.

SDVC thus integrates multicast video and
audio with a scalable key exchange protocol and
secure multiparty group communication to pro-
vide an authenticated, encrypted data stream.

SDVC COMPONENTS

In this section we describe our enhancements and
additions to SVC.

MPEG encoding and decoding

As distributed, vic does not support MPEG.
We added support for Sun hardware MPEG-1
encoding and multiple platform software MPEG-
1 decoding.

MPEG is designed to be computationally
asymmetric, with the encoding process requiring
about 100 times the computing power of the
decoding process. Accordingly, SDVC encodes
the video stream in hardware using a SunVideo
board [7] and decodes the MPEG video stream in
software. Software decoding of the MPEG
stream is CPU bound, which is acceptable in this
world of rapid increases in CPU speed.

For encoding, SDVC extends the existing
vic Sun XIL grabber interface to access the
MPEG-1 stream generated by the hardware
board. To facilitate frame reconstruction by the
decoders in the face of dropped packets, SDVC
configures the SunVideo board to produce an
MPEG-1 stream consisting entirely of ‘‘I’’
frames.

SDVC integrates the publically available
Berkeley MPEG decoder mpeg_play [8] into
vic as the software decoding component for
UNIX platforms.

mpeg_play is an X Window System appli-
cation designed to play an MPEG-1 stream read
from a UNIX file. A 400 KB buffer is filled from
the file system and passed to the MPEG decoder
in 80 KB chunks. While this read-ahead buffer-
ing gives the user a smooth view of an MPEG
stream played from a local file, real time decod-
ing of an MPEG stream from a network interface
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requires a different buffering scheme. SDVC
reconstructs one frame of encoded MPEG-1 data
into a buffer, then tries to pass the single frame to
the MPEG decoder while reconstructing the next
encoded MPEG frame into a second buffer. If the
decoder is busy and cannot accept the first buf-
fered frame, the frame is dropped and the buffer
is used to reconstruct the next frame arriving on
the network interface. This strategy allows
mpeg_play to accommodate variances in net-
work and CPU speeds while providing a real time
view of the MPEG stream that is as smooth as
possible.

SDVC uses the Win32 DirectShow interface
for hardware and software decoding of the the
MPEG-1 video stream on Win95, Win98, and
NT. Microsoft’s DirectShow architecture is
integrated with their DirectX technologies to take
advantage of any hardware acceleration available
on the Windows platform automatically; other-
wise, available software components for audio or
video playback are used. DirectShow uses a filter
graph architecture where individual filters are
connected together into a ‘‘graph’’ to process
data.

Filters are categorized into source filters,
transform filters, and rendering filters. For
SDVC, we created a network source filter that is
provided the MPEG-1 video data from vic as it
is received from the network. The source filter
sends the data downstream to the transform and
rendering filters for display. Care is taken to
reduce copying of data by using buffers supplied
by downstream filters whenever available. If a
DirectShow compatible hardware MPEG-1
decoder is available, the DirectShow graph editor
should automatically include it as the rendering
filter. However, we found that the software
MPEG-1 decoder filter, and not the Netstream
hardware decoding filter, was selected when
rendering the output of our source filter. To take
advantage of the Netstream hardware MPEG-1
decoder, SDVC therefore specifically includes
and connects the hardware decoding filter when
building the filter graph. Inquiries to Sigma
Designs support resulted in a theory that this was
due to the non-standard size (320×240) of the
input stream (but we have not yet been able to
verify this theory).

The SunVideo board produces an MPEG-1
encoded video stream at a resolution of 320×240
pixels. Video bandwidth depends on the quality
setting of the capture device as well as the visual
complexity of the video stream. At 30 frames per

second, the MPEG-1 stream generated by the
SunVideo board varies from approximately 1.5
Mbps at a low quality setting to approximately 7
Mbps for the highest quality setting.

Software MPEG-1 decoding is CPU bound.
On our isolated test network consisting of three
10 Mbps switched nets connected to a Cisco 4000
router, we observe mixed results, shown in Table
1. The source is sending 30 frames per second at
3.5 Mbps. Reductions in frame rate and Mbps at
the receiver are due to the software MPEG-1
decoder dropping frames as the CPU is unable to
keep up with the input rate while decoding the
input video stream.

Cryptographic Functionality

SDVC inherits cryptographic functionality and
the ability to switch ciphers on the fly from its
predecessor SVC, which adds the ciphers RC4
[9] and VRA [1], to the XOR and DES ciphers
shipped with vic. RC4 is a simple stream cipher
reputed to be fast and secure. VRA is Bellcore’s
‘‘provably secure’’ high-performance stream
cipher.

In SVC, VRA convincingly outperforms RC4.
VRA has another advantage over RC4: it can
decrypt out-of-order packets, which RC4 can not.
If a packet is lost, the receiver rolls its RC4 state
forward and continues to decrypt data following
the lost packet. But there is no way to roll back
the RC4 state, so packets received out of order
cannot be decrypted. On the other hand, the inner
loop of VRA, which selects rows in a wide binary
table to XOR with the stream data, requires only
the packet sequence number to pick the rows.
For these reasons, we dropped RC4 support in
SDVC.

Security architecture

As in SVC, SDVC uses the GSS API to allow dif-
ferent security mechanisms to be interchanged.
SDVC replaces LSGC’s Leighton-Micali authen-
tication mechanism with the Globus GSS API but
preserves the existing participant key structure.
The participant key is a shared secret between a
participant and the LSGC group server. The parti-
cipant key is used to encrypt the common group
data key. In this way, the data key is delivered
only to participants that have authenticated to the
LSGC group server.

Unicast peers using the GSS API create and
hold a GSS security context for the life of a
secure connection. In a unicast environment, the
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Platform, OS fps Effective Stream CPU Usage

200Mhz Sun Ultra-5, Solaris 2.6 30 3.5 Mbps 84%

50Mhz Sun Sparc-20, Solaris 2.5 10 1.0 Mbps 85%

122Mhz IBM 42T, AIX 4.1 19 1.9 Mbps 74%

400Mhz Pentium, OpenBsd 24 3.0 Mbps 80%

Table 1 This table shows measured performance for platforms receiving a 3.5 Mbps, 30 fps
MPEG-1 input stream. Only one of the receivers is capable of displaying the full stream; the other
receivers are CPU-bound and can not decode the input stream at the offered rate.

security context is used both for authentication
and for data encryption; obtaining the security
context implies that authentication has occurred,
and the security context stores the shared secret
used for data encryption. Secure group communi-
cation requires additional security contexts
because group peers need not only to authenticate
individually to join the group using the existing
GSS security context, but also need to share a
common data encryption key. Extending the GSS
API to include these group security issues is
beyond the scope of the SDVC project, primarily
because it would be necessary to maintain multi-
ple GSS contexts on the server and multiplex
between them in communicating with partici-
pants. This would raise many GSS API imple-
mentation specific issues.

Participant key distribution

We use Globus to distribute participant keys on
demand. When a client participant joins the mul-
ticast group, the server must pass it securely a
participant key before the client can begin decod-
ing the multicast video stream. SVC uses a smart
card based Shoup-Rubin protocol [10] for key
distribution, but SDVC passes the key using SSL,
using the Globus GSS API and SSLeay [11]
implementations.

We distribute a Globus ‘‘gatekeeper’’
certificate and corresponding private key with the
SDVC server and obtain conventional Globus
user certificates and private keys for all clients.
The private key for gatekeeper certificates is not
protected via encryption and therefore must be
stored securely;† our security model requires
good physical security for the server. Certificate
requests are generated by the Globus software
and digitally signed by the Globus Certificate
Authority. We distribute the requisite self-signed
hhhhhhhhhhhhhhhhhh
† Storing the gatekeeper key encrypted is possible,
but this requires entering a password at the server
each time a new client connects. A potential
smartcard solution is attractive.

Globus CA certificate with the server and all
clients.

To obtain a participant key in order to join the
LSGC group, a client uses Globus to initiate a
secure GSS connection by calling
gss_init_sec_context. This requires the
user to enter the pass phrase protecting the private
key stored on the client. The server maintains a
thread that listens for such requests and completes
the Globus context-establishment loop with the
client by calling
gss_accept_sec_context. As part of the
context-establishment protocol, the client deter-
mines that the common name stored in the
server’s certificate is as expected, i.e., the server
authenticates itself to the client. The server then
generates and stores a client participant key, and
uses gss_wrap to encrypt and send it to the
client, which uses gss_unwrap for retrieval.
Server and client now share a key that can be
used for subsequent secure communications and
the GSS security context is mutually destroyed.
Concurrent client key requests are processed seri-
ally at the server.

We built the participant key exchange code
using the domestic version of the Globus security
library and a pair of modified test programs sup-
plied by Doug Engert [12].

Multiparty key distribution

The distribution and management of the group
membership and data encryption keys is per-
formed by the Lightweight Secure Group Com-
munication library. The LSGC security layer pro-
vides interfaces for the negotiation of the group
communication (data encryption) keys.

The data encryption key is specific to each
group view.‡ As each membership change occurs,
a new data encryption key is distributed and
hhhhhhhhhhhhhhhh
‡ A group view is a snapshot of group membership
during a period in which no membership changes
occur.
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installed. Re-keying ensures that only members
in the current view have access to the conferenc-
ing content.

The server begins re-keying by generating a
new data encryption key. This key is encrypted
with the participant key of each existing member
of the group, and the resulting encrypted blocks
are concatenated to form the session key distribu-
tion message. The message is forwarded to the
group using reliable broadcast. On receipt, each
participant uses its cached participant key to
extract the new session key and immediately
begins using it.

EXPERIENCES AND FURTHER WORK

IP Multicast or Bust

There are numerous multicast routing proto-
cols in use. Simple techniques include flooding
and spanning tree methods. More common are
source-based tree solutions, where a spanning tree
is built and rooted at each potential multicast
source. Both the Distance Vector Multicast Rout-
ing Protocol (DVMRP) [13] and the Protocol-
Independent Multicast (PIM) [14] routing proto-
cols use source based trees. The majority of the
routers in the MBONE use some version of PIM
or DVMRP.

The vBNS maintains a native IP multicast ser-
vice via a PIM dense-mode configuration among
all vBNS Cisco routers [15]. DVMRP unicast
routing is used, allowing the vBNS to support
delivery. Tunnels to PIM routers or mrouted
hosts and PIM connections to routers over point-
to-point VCs make up the multicast connections
to the vBNS. MBGP is currently under test
deployment on the vBNS. MBGP allows BGP
unicast routes to be tagged as multicast; this
allegedly addresses the scaling problem inherent
in DVMRP’s single routing domain.

LSGC protocol negotiations use multicast
between clients and server. Although LSGC pro-
vides reliable communications via retransmission,
inability to multicast from a client prevents that
client from joining the SDVC group. This means
that, unlike most multicast applications in
existence today, our application requires multicast
in both directions.

Multicast routing protocols deployed on the
vBNS follow unicast routes to locate hosts. This
means that the deployment of bi-directional

multicast routing requires careful attention to IP
unicast configuration on the routers deploying
multicast, taking care that the IP unicast routes
point to routers configured to handle the multicast
traffic. This is difficult in production networks
due to the existence of default IP routes and IP
route caching that may take precedence over stat-
ically assigned routes and mroutes.

The bi-directional multicast requirements of
SDVC combined with the complex unicast depen-
dencies of the multicast environment on the
vBNS proves to be the biggest challenge in
deploying a prototype SDVC.

We first tested SDVC in the CITI lab after
turning on IGMP in our Cisco 4000 router. We
tested a seven-way communication with one
SDVC 30 fps MPEG-1 video source, an SDVC
audio source, and six machines that received the
encrypted video and audio streams. As a proof of
concept, each receiver also sent H.261 encrypted
video and audio over the multicast channel. All
encryption used the group data key. This test
behaved properly.

We then tested SDVC at the Merit vBNS
point of presence [16] while Merit was
configuring its multicast connection to the vBNS.
We were able to send and receive multicast pack-
ets to and from the vBNS, but setting up a reliable
bi-directional multicast connection was difficult,
requiring coordination with intermediate vBNS
router administrators to install static or default
mroutes into the production routers to make sure
the reverse path forwarding tree was correct. Bi-
directional multicast then worked intermittently.
Suspecting the interface between the entry routers
to the vBNS and the MBGP functional vBNS
router software as the culprit, Merit loaded Cisco
routers with an IOS with MBGP functionality to
provide the vBNS connection. We tested SDVC
over the vBNS and were able to connect success-
fully with three to four institutions, but an equal
number of institutions were unable to receive the
SDVC transmission because the existing multi-
cast configuration could not meet SDVC’s bi-
directional multicast needs.

SDVC was demonstrated at the Internet2
Member meeting September 27−29, 1998 in San
Francisco. We had results similar to the testing
done at Merit. The reverse path forwarding tree
was confirmed to be correct, yet bi-directional
multicast still did not work. Disabling IP route
caching enabled SDVC to function. The Internet2
Plenary sessions and Breakout sessions were
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broadcast over the vBNS and received by several
institutions.

LSGC Issues

Rekeying Synchronization

In the current implementation, a client may
receive packets encrypted with a new session key
before receiving the session key distribution mes-
sage. To address this limitation, a safe delivery
extension to the reliable group broadcast protocol
is required. Safe delivery has strong delivery
semantics that ensure that all processes in the
current group view have received a message
before any process delivers it to the application.
In this way, LSGC will be able to better syn-
chronize the client transition to new session keys.

Server Restart Recovery

Currently, when a server is shut down and res-
tarted, clients must be manually restarted before
gaining access to the new group. No user-level
indication of the server restart is provided.
Notification and recovery from server restarts is
necessary.

Security Protocol Improvements

The current implementation of the LSGC library
does not provide protection against message
reordering. An adversary may intercept, alter,
and broadcast protocol messages to effect an arbi-
trary ordering of the messages in the group. One
dire implication of this problem is that a client
may be coerced into using an old session key. To
address this problem, a protocol extension will be
added to include message authentication codes
covering the process group management and reli-
able broadcast fields of messages.

Further Work

GSS API

We will include two more GSS API interface
choices to SDVC: an exportable GSS API imple-
mentation that performs no encryption and passes
the participant key in the clear, and the Kerberos5
GSS API. These will be compile time options.

QoS

As part of the University of Michigan and Merit
Internet2 Qbone Testbed proposal, SDVC will be
enhanced with an RSVP [17] component, and

will be instrumented to measure end-to-end per-
formance of QoS attributes such as bandwidth,
latency, packet loss and jitter.

CONCLUSIONS

SDVC integrates multicast video and audio with a
scalable key exchange protocol and secure mul-
tiparty group communication to provide an
authenticated, encrypted data stream to members
of the multicast group.

Multicast delivery increases scalability at the
server at the cost of increased complexity at the
multicast routers. This is not a new result, yet our
experiences with the bi-directional multicast
employed by SDVC force us to conclude that
multicast routing requires changing many routing
configurations, a manual process that we know
does not work well at present.

Our goal of using and extending freely avail-
able code has largely been met, save for the
domestic Globus and Bellcore VRA security
components. We are actively addressing the
latter issue by working with Bellcore on VRA
licensing and are looking toward the AES effort
to deliver a stream cipher free of licensing restric-
tions and fast enough for our needs.

Our goal of software solutions on the client
naturally led to CPU limitations there. These lim-
itations can be removed with a liberal application
of cash e.g., hardware decoders or faster client
CPUs, or by waiting for Moore’s law to deliver
up the computers we need.
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