
ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 92-8

NESTMOD Simulation of DQDB Metropolitan
Networks

Gerald A. Winters
gerald@engin.umich.edu

David W. Bachmann
bachmann@austin.ibm.com

Toby J. Teorey
teorey@citi.umich.edu

Local area computer networks are well-established, and highly-interconnected, heteroge-
neous local networks are coming into prominence. NESTMOD is a combined analytical
modeling and simulation tool, based on the existing tools NetMod and NEST, that is re-
sponsible for representing the topology of interconnected networks as well as providing
library routines that describe the behavior of the interconnected networks. As an example
of current technology, the metropolitan area network, DQDB (distributed queue dual bus),
has been added to NESTMOD. The purpose of this paper is to describe the DQDB simula-
tion and compare the simulation results with well-known analytical results.

October 1992

Center for Information Technology Integration 1

NESTMOD Simulation of
DQDB Metropolitan Networks

Gerald A. Winters
David W. Bachmann

Toby J. Teorey

October 1992

1. Introduction

This section gives a brief description of NESTMOD (described fully in “NESTMOD: the NetMod-
NEST Interface” [1]) and explains its role. It is a tool comprised of the tools NetMod [2] and NEST
[3].

NetMod is a HyperCard-based set of analytic models of network topologies. The purpose of Net-
Mod is to allow the user to construct arbitrary networks, possibly composed of LANs, DQDBs, net-
work interconnect devices, and workstations or nodes.1 Characteristics such as medium capacity
and packet output rate for workstations can be set to individually tailor the system. Once the topol-
ogy and characteristics have been set, NetMod can provide a steady state analysis of the proposed
network in terms of its basic performance characteristics: utilization, mean packet delay, and aver-
age queue length. When dynamic behavior analysis is desired, then NESTMOD invokes NEST to
conduct the simulation.

NEST is a generalized network simulation tool. It allows simulation of arbitrary networks and net-
work topologies. Only point-to-point connections can be specified, so NEST requires a number of
detailed routines as input, such as the behavior of each of the components that comprise the net-
work.

The integration of NetMod and NEST is called NESTMOD. This union is intended to provide the
user with maximum flexibility as well as ease of use. A typical scenario would be for the user to call
NetMod to set up a blank window, compose an arbitrary network using the icon menus, and then
specify network topology and device/transmission medium characteristics. NetMod would then
send a description of the network to the analysis server, and the server would build and run the
simulation. See Figure 1.

In order to increase the suite of networks available to NESTMOD, the metropolitan area network
DQDB has been added. The remainder of this paper discusses certain aspects of DQDB, such as ar-
chitecture and protocol, as well as verifying the success of adding DQDB to NESTMOD.

1. We will use the terms workstation and node interchangeably throughout the remainder of this pa-
per and intend them to be the same.

Center for Information Technology Integration 2

NESTMOD Simulation of DQDB Metropolitan Networks

2. DQDB

2.1 Architecture

The dual bus architecture of DQDB is shown in Figure 2. Each bus carries information at the same
rate in opposite directions. This 45 Mbs DQDB actually operates at a total speed of 90 Mbs. Each
node, with connections to both busses, has read and unidirectional write capability with connec-
tions that are logically adjacent to the bus and do not pass serially through the nodes. This archi-
tecture has the advantage that passive node failures have no effect. Writing to the bus is done only
in “blank” slots so that a logical OR suffices to combine the 1-bits of the data with the all-0 slot space
on the bus. Active node failures are detected through hardware by means of input-to-output check-
ing [4]. When such a situation is detected, the checker can simply bypass the errant node. In con-
trast to ring architectures, data passes serially through each node and must be retransmitted and
removed as necessary. Therefore, in ring architectures both active and passive node failures can be
catastrophic because both types of failures involve some type of system healing. Healing involves
system reconfiguration that disrupts and consumes resources. Furthermore, additional node fail-
ures can produce network islands. This architectural difference offers advantages to DQDB both in
terms of robustness and reliability.

Located at the head end of each bus is a special node called a frame generator. Frames are generated
synchronously at a rate that is determined by the transmission speed. When frames reach the end
of the bus, they are simply dropped. A logical view of a frame can be seen in Figure 3. Frames are
further subdivided into fixed length slots (53 octets) that are the units of communication between
nodes. The slot control fields we shall be concerned about in this paper are the busy and request
fields (see Figure 4). The busy field indicates that a slot contains data and cannot be used for trans-
mission by other nodes. The request field is used to reserve empty slots. Upstream neighbors can
be signaled by a downstream node to let a slot pass by for use. The slots form the basis for deter-
mining the node’s position in the distributed queue. The node at the beginning of the queue may
use the next free slot, and new requests are placed at the end of the queue. The DQDB media access
protocol is the subject of the next section.

NetMod Analysis Server NEST

Analyze request

Result response

NEST graph

Simulation results

Library Routines

Token ring, DQDB, router, Ethernet, workstation. . .

Figure 1: Overview of NESTMOD

Center for Information Technology Integration 3

NESTMOD Simulation of DQDB Metropolitan Networks

2.2 Protocol

Media access, or scheduling, is achieved by sending reservations “upstream” when a node wishes
to transmit. The receiving node is always “downstream” from the sending node, in DQDB. Let’s
assume for a moment that a node wished to transmit a message on bus A (refer to Figure 2) to some
node downstream. This makes bus B the upstream direction. In order for a node to establish itself
in the distributed queue for bus A, it must send a reservation to its upstream neighbors by setting
the request bit of a slot on bus B. Each station keeps an up/down counter running continuously,
one for each bus. When a reservation request goes by on bus B, the counter is incremented by one.
When an empty slot goes by on bus A, the counter is decremented by one. A nonzero value in the
counter, indicating the position at the end of the distributed queue, means that there are outstand-
ing requests for empty slots. If the up/down counter is zero, then there are no outstanding requests
and the bus may be used at the next available slot. In the case where a node wishes to send a mes-
sage on bus B, a second up/down counter is used, and the previous discussion follows symmetri-
cally.

When a node wishes to transmit, it reads the up/down counter for the proper direction. If there are
no contents, the next empty slot may be used. Thus the token latency associated with ring protocols
can be eliminated. Under conditions of light load, the DQDB delay is short, which is a desirable
property shared with CSMA/CD protocols. If the up/down counter is nonzero, then the sample is
copied to a countdown counter and the up/down counter is set to zero. As empty slots pass by, the
countdown counter is decremented and when it reaches zero, the next empty slot may be used. Un-

Node

. . .

BUS A

BUS B

Unidirectional
write

Read tap

FRAME GENERATOR

FRAME GENERATOR

Figure 2: Logic Diagram for the DQDB Network Architecture

Center for Information Technology Integration 4

NESTMOD Simulation of DQDB Metropolitan Networks

der heavy load conditions, the efficiency approaches 100 percent [5]. This is similar to the situation
with token based protocols. A diagram of the counters is shown in Figure 5.

The combination of quick access under light load and predictable queueing delays under heavy
load make the DQDB protocol suitable for networks of metropolitan dimensions.

3. Simulation Layout

The purpose of this section is to give a brief description of the routines that were provided to the
analysis server in support of the actual simulation. Recall that the analysis server is responsible for
describing to NEST the behavior of the different components that make up the network. In the case
of DQDB, there were four basic components/modules that were provided: workstation, frame gen-
erator, network card, and wire. The simplest routine was the wire routine that described the prop-
agation delay for the buses. As messages pass along the wire, a propagation delay of 1 microsecond
is added for each network card the message passes. Therefore, the wire module assumes that nodes
are approximately 180 meters apart.

FRAME
HEADER

Slot 0 Slot 1 Slot n STUFFING
FIELD

. . .

Access Control Field

1 octet

Segments

52 octets

DQDB Slot

Busy

1 bit

Slot type Reserved Previous slot
received

Request

4 bits1 bit 1 bit 1 bit

Access Control Filed (1 octet)

DQDB Frame

Figure 3: DQDB Frame

Figure 4: DQDB Slot Format

Center for Information Technology Integration 5

NESTMOD Simulation of DQDB Metropolitan Networks

The frame generator routine is also fairly simple. In fact, this routine might be more aptly named
“slot generator.” Frames are not needed for purposes of simulation; all that is needed are slots to
pass by the network cards. Thus the frame generator is responsible for generating empty slots at a
rate of 1 every 9.4 microseconds (53 octets * 8 / 45 Mbs).

The workstation routine’s chief responsibility is generating packets. The workstations follow a
Poisson process for generating packet arrivals with mean passed from NetMod. The packet sizes
are generated according to an exponential distribution with mean value also passed from NetMod.

The network card module encapsulates the DQDB media access protocol and is responsible for
breaking the packets from workstations into slots and managing the local queues. This module also
“time stamps” the messages in order to compute delays. For example, when a packet is placed into
its local queue, it is time stamped. When the packet finally reaches the destination, this time can be
used along with the time stamp to compute the delay experienced by the packet. This information
can then be stored in a global data structure and tabulated for all messages upon completion of the
run.

Finally, a special graph data structure must be initialized for NEST that indicates the topology of
the network. The graph, along with the modules that describe the network behavior, constitute the
input that the analysis server must provide to NEST in order to run the simulation. Included in the
appendices is a sample of the code as well as a schematic overview showing the connection be-
tween modules.

4. DQDB Analysis and Verification

In this section, we present numerical results from our simulations of the DQDB protocol and the
analytic model given in Potter and Zukerman’s paper, “Analysis of a Discrete Multipriority Queue-
ing System” [6]. We will compare our simulation results with the results obtained from Potter and
Zukerman to verify our simulation model. They show that their analytic model is sufficient for pre-
dicting packet delay by comparing its accuracy to simulation runs. Therefore, we use their analytic
model as a benchmark for verifying our simulation model. This model for packet delay, , is
given as follows:

D b()

empty slots

up/down
counter

requests

sample

countdown
counter

= 0 ready to
transmit

Figure 5: Media Access Counters

Center for Information Technology Integration 6

NESTMOD Simulation of DQDB Metropolitan Networks

where

• = average packet length, where b is a random variable representing the packet length in slots

• p = bus utilization

• M = number of workstations

• = the squared coefficient of the variation of b

•

• a = random variable representing the number of packet arrivals within a slot to any local queue

• λ = packet arrival rate within a slot

• = the squared coefficient of the variation of a

This formula, , gives the mean packet delay in slots and does not include propagation. It is
important for us, at this point, to state that this is analytic model makes the assumption that the re-
quest channel has infinite capacity. Of course this is not possible to implement in a real network
and one would expect that this model would report delays lower than actual network delays. Our
results seem to support his idea as we experienced delays between 11% and 28% greater than the
delay from the analytic model. This underscores the importance of having a good simulation model
for DQDB, given the simplifying assumptions required by current analytical models.

In Table 1 we present our numerical results along with the results from the closed form analytical
model obtained from Potter and Zukerman [6]. Inspection of Table 1 shows similar results when
comparing the simulation runs versus the analytic results. The length of the simulation runs were
set at 100 milliseconds (generating 20,000 slots). Five runs were conducted for each utilization value
and the average of the runs were computed and compared to the analytic results. The system con-
sisted of M = 7 nodes spaced one slot apart with varying packet rates per run. We held the packet
size constant at 8000 bits throughout the runs. Because our simulation model delay was generally
close to the analytic model delay under varying utilization values, we are confident that our simu-
lation model is a reasonably accurate predictor of DQDB performance, although further simula-
tions and appropriate statistical tests need to be done [7].

D b() v
2

1
p

1 p−+()
b b 1 C 2

b
+() 1+ 2⁄−

1
M 1−

M
p−

1
2

+ +=

b

C 2

b

v b C 2

b
λC 2

a
() M⁄+()=

C 2

a

D b()

Center for Information Technology Integration 7

NESTMOD Simulation of DQDB Metropolitan Networks

5. Conclusion

In this paper we have reported our results for adding the simulation of DQDB to NESTMOD. To
judge the success of this endeavor, we compared our simulation results to published analytic re-
sults. Based on the low percentage of error between the analytic and simulation results, we feel con-
fident in our ability to model DQDB.

Table 1. DQDB Simulation Versus Analytic Results (single priority case)

Input Workload Packet Delay (ms)

Packet Rate (pps) Util. Sim. Sim. Avg. Analytic % error

1300 89% 2.3332 2.0168 1.7860 +13

1.7165

1.8437

2.1202

2.0706

1100 75% 1.0047 1.0092 0.7890 +28

1.0205

1.0394

1.0112

0.9700

900 62% 0.5564 0.5618 0.5070 +11

0.5717

0.5585

0.5415

0.5809

450 31% 0.3535 0.3318 0.2820 +18

0.3370

0.3226

0.3306

0.3153

Center for Information Technology Integration 8

NESTMOD Simulation of DQDB Metropolitan Networks

References

[1] U. Amin, D. Bachmann, K. Deboo, and T.J. Teorey. “NESTMOD: the NetMod-NEST Inter-
face.” Proceedings of the 1991 CAS Conference, pages 239-254, October 1991.

[2] D. W. Bachmann, M.E. Segal, and T.J. Teorey. “NetMod: a Design Tool for Large-scale Het-
erogeneous Campus Networks.” IEEE Journal on Selected Areas in Communications, 9(1):15-
24, January 1991.

[3] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon. “NEST: A Network Simulation and Pro-
totyping Testbed.” Communications of the ACM, 33(10):66-74, October 1990.

[4] J.L. Hullett. “New Proposal Extends the Reach of Metro Area Nets.” Data Communications,
pages 139-147, February 1988.

[5] J.F. Mollenauer. “Standards for Metropolitan Area Networks.” IEEE Communications,
pages 15-19, April 1988.

[6] Philip G. Potter and Moshe Zukerman. “Analysis of a Discrete Multipriority Queueing Sys-
tem Involving a Central Shared Processor Serving Many Local Queues.” IEEE Journal on Se-
lected Areas in Communications, 9(2):194-202, February 1991.

[7] T.J. Teorey. “Validation Criteria for Computer System Simulations.” Proceedings of the
ACM-SIGSIM on the Simulation of Computer Systems, pages 161-175, August 1975.

Center for Information Technology Integration 9

NESTMOD Simulation of DQDB Metropolitan Networks

Appendix A: C-code for DQDB Network Card Simulation

/*
Simulation of DQDB in NEST; LIBRARY function for DQDB.
This module imitates a DQDB network card.

*/

#include <stdio.h>
#include <math.h>
#include “dqdb.h”
#include “../library.h”

dqdbnode(nodeid)
ident nodeid; /* My position along the network */

{
ident sender,dest;
char *message;
timev sendt,arrvt;

/* Local queues */
struct Queue qA[QUEUE_LENGTH,qB[QUEUE_LENGTH], *q;
int readatA, putatA, readatB, putatB,

*readat, *putat; /* Indices in queue of messages yet to be sent */
int countdownA, countdownB; /* Count down counters */
unsigned countreqA, countreqB; /* Request counters */
exern void init_queue_pointers(), dqdb_packet_handler(), put_in_dqdb_queue ();

stop_time(); /* Stop simulation time during workstation initialization */

init_queue_pointers (&putatA, &readatA);
init_queue_pointers (&putatB, &readatB);
RESET_COUNTDOWN_COUNTER (countdownA);
RESET_COUNTDOWN_COUNTER (countdownB);
countreqA = countreqB = 0;

while (totalPasses)
{

/* Nodes sleep while waiting for messages */
sender=recvmt(&dest,&msgtype,&message,&sendt,&arrvt);

if (MESSAGE_FROM_WS(msgtype)) /*Message is from workstation */
{
if (BUSA_PACKET(-msgtype,nodeid)) /* Determine the proper bus*/

{
q = qA;
putat = &putatA;
readat = &readatA;
}

else
{
q = qB;
putat = &putatB;

Center for Information Technology Integration 10

NESTMOD Simulation of DQDB Metropolitan Networks

readat = &readatB;
} /* Queue the message until bus access is gained */

put_in_dqdb_queue(nodeid,putat,readat,q,message);
}

else if (BUSA_SLOT(nodeid,sender)) /*Slot is on bus A */
/* The slot handler manages bus access */

dqdb_slot_handler(nodeid,sender,msgtype,&countreqA,countreqB,
&countdownA,&countdownB,&putatA,&readatA,putatB, readatB,qA,
arrvt,speed,message);

else
dqdb_slot_handler(nodeid,sender,msgtype,&countreqB,countreqA,

&countdownB,countdownA,&putatB,&readatB,putatA,readatA, qB,
arrvt,speed,message);

} /* while(totalPasses) */

} /* routine dqdbnode */

Center for Information Technology Integration 11

NESTMOD Simulation of DQDB Metropolitan Networks

DQDBNode MessageCreateNode DQDBWire

NEST

DQDBSlotHandler

DQDBPropagate

 Appendix B: Module Interconnection

Figure 6: Schematic View of the Interconnection Between Main Modules

