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ABSTRACT 
Grid computations require global access to massive data stores.  
To meet this need, the GridNFS project aims to provide scalable, 
high-performance, transparent, and secure wide-area data man-
agement as well as a scalable and agile name space. 

While parallel file systems give high I/O throughput, they are 
highly specialized, have limited operating system and hardware 
platform support, and often lack strong security mechanisms.  
Remote data access tools such as NFS and GridFTP overcome 
some of these limitations, but fail to provide universal, transpar-
ent, and scalable remote data access. 

As part of GridNFS, this paper introduces Direct-pNFS, which 
builds on the NFSv4.1 protocol to meet a key challenge in access-
ing remote parallel file systems: high-performance and scalable 
data access without sacrificing transparency, security, or portabil-
ity.  Experiments with Direct-pNFS demonstrate I/O throughput 
that equals or outperforms the exported parallel file system across 
a range of workloads. 

Categories and Subject Descriptors 
D.4.8 [Operating Systems]: Performance – measurements. 

General Terms 
Performance, Design, Experimentation 

Keywords 
Parallel I/O, NFSv4, pNFS, Distributed File System 

1. INTRODUCTION 
The GridNFS project aims to facilitate large data sets in the Grid 
by providing scalable name space management and by developing 
the means for scalable, transparent, and secure data access.  To 
meet performance requirements, GridNFS may need to use all 
available bandwidth provided by a parallel file system’s storage 
nodes.  In addition, GridNFS must be able to provide simultane-
ous, parallel access to a single file from many clients, a common 
requirement of high-energy physics applications. 

Parallel file systems feature impressive throughput, but they are 
highly specialized, have limited operating system and hardware 
platform support, and often lack strong security mechanisms.  In 
addition, while parallel file systems excel at large data transfers, 
many do so at the expense of small I/O performance.  While large 
data transfers dominate many scientific applications, many work-
load characterization studies highlight the prevalence of small, 
sequential I/O requests in modern scientific applications [1-3]. 

Many application domains demonstrate the need for high band-
width, concurrent, and secure access to large datasets across a 
variety of platforms and file systems.  Scientific computing that 
connects large computational and data facilities across the globe 
can generate petabytes of data.  Digital movie studios that gener-
ate terabytes of data every day require access from compute clus-
ters and Sun, Windows, SGI, and Linux workstations [4].  This 
need for heterogeneous data access produces a tension between 
parallel file systems and application platforms.  Distributed file 
access protocols such as NFS [5] and CIFS [6] bridge the interop-
erability gap, but they are unable to deliver the superior perform-
ance of a parallel file system.   

pNFS, an integral part of NFSv4.1 [7], overcomes these grand 
challenge-scale obstacles by enabling direct NFSv4.1 client ac-
cess to storage while preserving operating system, hardware plat-
form, and parallel file system independence.  pNFS provides file 
access scalability by using the storage protocol of the underlying 
parallel file system to distribute I/O across the bisectional band-
width of the storage network between clients and storage devices, 
removing the single server bottleneck so vexing to client/server-
based systems.  In combination, the elimination of the single 
server bottleneck and direct storage access by clients yields supe-
rior remote file access performance and scalability [8]. 

Regrettably, pNFS does not retain NFSv4 file system access 
transparency and can therefore not shield applications from dif-
ferent parallel file system security protocols and metadata and 
data consistency semantics.  In addition, implementing pNFS 
support for every storage protocol on every operating system and 
hardware platform is a colossal undertaking.  File systems that 
support standard storage protocols may be able to share develop-
ment costs, but full support for a particular protocol is often unre-
alized, hampering interoperability.  The pNFS file-based storage 
protocol bridges this transparency gap with middle-tier data serv-
ers, but eliminates direct data access, which can hurt performance. 

1.1. Contributions 
This paper introduces Direct-pNFS, a novel augmentation to 
pNFS that increases portability and regains parallel file system 
access transparency while continuing to match the performance of 
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native parallel file system clients.  Architecturally, Direct-pNFS 
uses the NFSv4 storage protocol for direct access to a parallel file 
system’s storage nodes.  In addition, Direct-pNFS leverages the 
strengths of NFSv4.1 to improve I/O performance over the entire 
range of I/O workloads.  We know of no other file access protocol 
that offers this level of performance, scalability, file system ac-
cess transparency, and file system independence. 

Direct-pNFS makes the following contributions: 
Heterogeneous and ubiquitous remote parallel file system 
access.  Direct-pNFS benefits are available with an unmodified 
NFSv4.1 client and does not require file system specific layout 
drivers, e.g., object [9] or PVFS2 [8]. 
Remote parallel file system access transparency and inde-
pendence.  pNFS uses parallel file system-specific storage proto-
cols, which can expose gaps in the underlying file system seman-
tics (such as security support).  Direct-pNFS, on the other hand, 
retains NFSv4 file system access transparency by using the 
NFSv4 storage protocol for data access.  In addition, Direct-pNFS 
can provide remote access to any parallel file system since it does 
not interpret file system-specific information. 
I/O workload versatility.  While distributed file systems and file 
access protocols are usually engineered to perform well on small 
data accesses [10], parallel file systems target large data transfers.  
Direct-pNFS combines the strengths of both, providing high-
performance data access to the small and large data requests in 
scientific workloads. 
Scalability and throughput.  To realize the performance of ex-
ported parallel file systems, conventional pNFS prototypes are 
forced to support the exported storage protocol [8].  Direct-pNFS, 
on the other hand, can match the performance of the exported 
parallel file system without requiring support for any protocol 
other than NFSv4.1.  This paper uses numerous benchmarks to 
demonstrate that Direct-pNFS matches the I/O throughput of a 
parallel file system, and has superior performance in workloads 
that contain many small I/O requests. 
A case for commodity high-performance remote data access.  
Direct-pNFS complies with emerging IETF standards and uses an 
unmodified NFSv4.1 client.  This paper makes a case for open 
systems in the design of high-performance clients, demonstrating 
that standards-compliant commodity software can deliver the 
performance of a non-standards based parallel file system client.   

The remainder of this paper is organized as follows.  Section 2 
makes the case for open systems in distributed data access.  Sec-
tion 3 reviews pNFS and its departure from traditional cli-
ent/server distributed file access protocols.  Sections 4 and 5 de-
scribe the Direct-pNFS architecture and our Linux prototype.  
Section 6 reports the results of experiments with micro-
benchmarks and four different I/O workloads.  Section 7 dis-
cusses related work.  We summarize and conclude in Section 8. 

2. COMMODITY HIGH-PERFORMANCE 
REMOTE DATA ACCESS 

NFS owes its success to an open protocol, platform ubiquity, and 
transparent access to file systems, independent of the underlying 
storage technology.  Beyond performance and scalability, remote 
data access requires all these properties for success in Grid, clus-
ter, enterprise, and personal computing.   

The benefits offered by Direct-pNFS or any other standards-based 
remote data access protocol are numerous.  A single client can 
access data within a LAN and across a WAN, reducing the cost of 
development, administration, and support.  System administrators 
can select a storage solution with confidence that regardless of the 
operating system and hardware platform, users are able to access 
the data.  In addition, storage vendors are free to focus on ad-
vanced data management features such as fault tolerance, archiv-
ing, manageability, and scalability without having to custom tai-
lor their products across a broad spectrum of client platforms. 

3. SCALABLE I/O WITH pNFS 
This section summarizes and evaluates the pNFS architecture.  A 
full description can be found elsewhere [7, 8]. 

3.1. pNFS Overview 
pNFS, an integral part of NFSv4.1, transforms NFSv4 into a het-
erogeneous metadata protocol.  pNFS clients and servers are re-
sponsible for control and file management operations, but dele-
gate I/O functionality to a storage-specific layout driver on the 
client.  By separating control and data flows, pNFS clients can 
fully saturate the available bandwidth of the parallel file system. 

Figure 1 displays the pNFS architecture.  The control path con-
tains all NFSv4.1 operations and features, continuing to use 
RPCSEC_GSS for authentication and NFSv4 ACLs (a super set 
of POSIX ACLs) for authorization.  The data path can support 
any storage protocol, but the IETF design effort focuses on file-, 
object-, and block-based storage protocols. 

pNFS adds a layout driver and an I/O driver to the standard 
NFSv4 architecture.  The layout driver interprets and utilizes the 
opaque layout information returned from the pNFS server.  A 
layout contains the information required to access any byte range 
of a file.  In addition, a layout may contain file system specific 
access information.  For example, the object-based layout driver 
requires the use of OSD access control capabilities [11].  To per-
form direct and parallel I/O, a pNFS client first requests layout 
information from the pNFS server.  The layout driver uses the 
information to translate read and write requests from the pNFS 
client into I/O requests directed to storage devices.  For example, 
the NFSv4.1 file-based storage protocol stripes files across 
NFSv4.1 data servers; only READ, WRITE, COMMIT, and ses-
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Figure 1.  pNFS architecture.  pNFS splits the NFSv4 proto-
col into control and data paths and adds a layout and I/O 
driver.  The NFSv4.1 protocol governs the control path.  To 
use the data path, a pNFS client obtains an opaque layout 
from a pNFS server and hands it off to the layout driver, 
which uses a storage-specific protocol to provide direct and 
parallel data access. 



 

sion operations are used on the data path.  The pNFS server can 
generate layout information itself or, for non-NFSv4.1 file-based 
layouts, request assistance from the underlying file system.  The 
I/O driver performs I/O, e.g., iSCSI [12], to the storage nodes. 

3.2. Hybrid File System Semantics 
Although parallel file systems separate control and data flows, 
there is tight integration of the control and data protocols.  Users 
must adapt to different semantics for each data repository.  pNFS, 
on the other hand, allows applications to realize common file 
system semantics across data repositories.  As users access het-
erogeneous data repositories with pNFS, the NFSv4.1 metadata 
protocol provides a degree of consistency with respect to the file 
system semantics within each repository. 

Unfortunately, certain semantics are layout driver and storage 
protocol dependent, and they can drastically change application 
behavior.  For example, Panasas Activescale [13] supports the 
OSD security protocol [11], while Lustre [14] supports a special-
ized security protocol.  This forces clients that need to access both 
parallel file systems to support multiple authentication, integrity, 
and privacy mechanisms.  Additional examples of these semantics 
include client caching, and fault tolerance.   

3.3. Burden of Layout Driver Development 
Layout and I/O drivers are the workhorses of pNFS high-
performance data access.  These specialized components under-
stand the parallel file system’s storage protocol, security protocol, 
file system semantics, device identification, and layout descrip-
tion and management.  For pNFS to achieve broad heterogeneous 
data access, layout and I/O drivers must be developed and sup-
ported on a multiplicity of operating system and hardware plat-
forms—an effort comparable in magnitude to the development of 
a parallel file system client. 

3.4. The pNFS File-Based Storage Protocol 
Currently, the IETF is developing three storage protocols: file, 
object, and block.  The NFSv4.1 protocol includes only the file-
based storage protocol, with object and block to follow in sepa-
rate specifications [9, 15].  As such, all NFSv4.1 implementations 
will support the file-based storage protocol, while support for 
object and block storage protocols will be optional. 

A file-based layout governs an entire file and is valid until re-
called by the pNFS server.  To perform data access, the file-based 
layout driver combines the layout information with a known list 
of data servers for the file system, and sends READ, WRITE, and 
COMMIT operations to the correct data servers.  Once I/O is 
complete, the client sends updated file metadata, e.g., size or 
modification time, to the pNFS server.  

pNFS file-based layout information consists of: 
• Aggregation type and stripe size 
• Data server identifiers 
• File handles (one for each data server) 
• Policy parameters  

Figure 2 illustrates how the pNFS file-based storage protocol 
provides access to a parallel file system (parallel FS).  pNFS cli-
ents access pNFS data servers that export parallel FS clients, 
which in turn access data from parallel FS storage nodes and 
metadata from parallel FS metadata servers.  A parallel FS man-
agement protocol binds metadata servers and storage, providing a 
consistent view of the file system.  pNFS clients use NFSv4 for 
I/O while parallel FS clients use the parallel FS storage protocol. 

3.4.1. Performance Issues 
Architecturally, the pNFS file-based storage protocol offers some 
latitude.  As shown in Figure 2, while pNFS clients always access 
remote pNFS servers, we can configure the exported parallel FS 
to create two- and three-tier architectures.  The three-tier architec-
ture separates parallel FS clients and storage nodes, while the 
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Figure 2.  pNFS file-based architecture.  A pNFS file-based system consists of pNFS data servers, clients and a metadata server, 
plus parallel file system (PFS) storage nodes, clients, and metadata servers.  The three-tier design prevents direct storage access and 
creates overlapping and redundant storage and metadata protocols.  The two-tier design, which places pNFS servers and the exported 
parallel file system clients on storage nodes, suffers from these problems plus diminished single client bandwidth. 



 

two-tier architecture couples parallel FS clients and storage on the 
same node.  Figure 3 demonstrates how neither choice features 
direct data access: the three-tier architecture has intermediary data 
servers while with two-tiers, striped data is transferred between 
data servers, reducing the available bandwidth to the pNFS client.  
These architectures can improve NFS scalability, but the lack of 
direct data access—a primary benefit of pNFS—scuttles perform-
ance  [16]. 

Block size mismatches and overlapping metadata protocols also 
diminish performance.  If the pNFS block size is greater than the 
parallel FS block size, a large pNFS data request produces extra 
parallel FS data requests, each incurring a fixed amount of over-
head [17].  Conversely, a small pNFS data request forces a large 
parallel FS data request, unnecessarily taxing storage resources 
and delaying the pNFS request.  pNFS file system metadata re-
quests to the pNFS server, e.g., file size, layout information, be-
come parallel FS client metadata requests to the parallel FS meta-
data server.  This ripple effect increases overhead and delay for 
pNFS metadata requests. 

It is hard to address these remote access inefficiencies with fully 
connected block-based parallel file systems, e.g., GPFS [18], GFS 
[19, 20], and PolyServe Matrix Server [21], but for parallel file 
systems whose storage nodes admit NFSv4 servers, Direct-pNFS 
offers a solution. 

4. DIRECT-pNFS 
Direct-pNFS supports direct data access—without requiring a 
storage-specific layout driver on every operating system and 
hardware platform—by exploiting file-based layouts to describe 
the exact distribution of data on the storage nodes.  Since a Di-
rect-pNFS client knows the exact location of a file’s contents, it 
can target I/O requests to the correct data servers.  Direct-pNFS 
supports direct data access to any parallel file system that allows 
NFSv4 servers on its storage nodes—such as object based [13, 
14], PVFS2 [22], and IBRIX Fusion [23]—and inherits the opera-
tional, fault tolerance, and security semantics of NFSv4.1. 

4.1. Architecture 
In the two- and three-tier pNFS file-based architectures shown in 
Figure 2, the underlying layout is unknown to pNFS clients.  This 
forces them to distribute I/O requests among data servers without 
regard for the actual location of the data.  To overcome this inef-
ficient access, Direct-pNFS, shown in Figure 4, uses a layout 
translator to convert a parallel FS layout into a pNFS file-based 
layout.  This provides Direct-pNFS clients with accurate knowl-
edge of the underlying layout of data on storage.  A pNFS server, 
which exists on every parallel FS data server, can now satisfy 
Direct-pNFS client data requests by simply accessing the local 
parallel FS storage component.  Direct-pNFS and parallel FS 
metadata components also co-exist on the same node, which 
eliminates remote parallel FS metadata requests from the pNFS 
server.   

In combination, the use of accurate layout information and the 
placement of pNFS servers on parallel FS storage and metadata 
nodes eliminates extra parallel FS data and metadata requests and 
obviates the need for data servers to support the parallel FS stor-
age protocol altogether.  The use of a single storage protocol also 
eliminates block size mismatches between storage protocols. 

4.2. Layout Translator 
To give Direct-pNFS clients exact knowledge of the underlying 
layout, a parallel FS uses the layout translator to specify a file’s 
storage nodes, file handles, aggregation type, and policy parame-
ters.  The layout translator gathers this information and creates a 
pNFS file-based layout.  The layout translator is independent of 
the underlying parallel FS and does not interpret parallel FS lay-
out information. 

The overhead in using the layout translator is small and confined 
to the metadata server.  For example, our Linux prototype has the 
pNFS server specify the required file handles.  The parallel FS 
needs to provide the layout translator with only the aggregation 
type and parameters, e.g., stripe size. 

4.3. Optional Aggregation Drivers 
It is impossible for the NFSv4.1 protocol (and hence NFSv4.1 
clients) to support every method of distributing data among the 
storage nodes.  At this writing, the NFSv4.1 protocol supports two 
aggregation schemes: round-robin striping and a second method 
that specifies a list of devices that form a cyclical pattern for all 
stripes in the file.  To broaden support for unconventional aggre-
gation schemes such as variable stripe size [24] and replicated or 
hierarchical striping [25, 26], Direct-pNFS also supports optional 
“pluggable” aggregation drivers.  An aggregation driver provides 
a compact way for the Direct-pNFS client to understand how the 
underlying parallel FS maps file data onto the storage nodes. 

Aggregation drivers are operating system and platform independ-
ent, and are based on the distribution drivers in PVFS2, which use 
a standard interface to adapt to most striping schemes.  Although 
aggregation drivers are non-standard components, their develop-
ment effort is minimal compared to the effort required to develop 
an entire layout driver. 

 
(a) three-tier 

 
(b) two-tier 

Figure 3.  Indirect pNFS file-based data access.  (a) Three-
tier file-based pNFS uses intermediary data servers that block 
direct access to parallel file system storage nodes.  (b) Two-
tier file-based pNFS data servers must communicate to access 
both local and remote parallel file system storage nodes. 



 

5. DIRECT-pNFS PROTOTYPE 
We implemented a Direct-pNFS prototype that maintains strict 
agnosticism of the underlying parallel file system and, as we shall 
see, matches the performance of the parallel file system that it 
exports.  Figure 5 displays the architecture of our Direct-pNFS 
prototype, using PVFS2 for the exported file system. 

PVFS2 is a user-level, open-source, scalable, parallel file system 
designed for the large data needs of scientific applications in re-
search and production environments.  PVFS2 uses large transfer 
buffers, supports limited request parallelization, incurs a substan-
tial per-request overhead, and does not use a client data or write 
back cache.  A kernel module allows integration into a user’s 
environment and access by other file systems such as NFS. 

Many scientific applications can re-create lost data, so PVFS2 
buffers data on storage nodes and sends the data to stable storage 
only when necessary or at the application’s request (fsync).  To 
match this behavior, our Direct-pNFS departs from the NFSv4 
protocol, committing data to stable storage only when an applica-
tion issues an fsync or closes the file. 

At this writing, the user-level PVFS2 storage daemon does not 
support direct VFS access.  Instead, the Direct-pNFS data servers 
simulate direct storage access by way of the existing PVFS2 cli-
ent and the loopback device.  The PVFS2 client on the data serv-
ers functions solely as a conduit between the NFSv4 server and 
the PVFS2 storage node on the node.  

Our Direct-pNFS prototype uses special NFSv4 StateIDs for ac-
cess to the data servers, round-robin striping as its aggregation 
scheme, and the following NFSv4.1 operations: 

GETDEVLIST:  Issued at file system mount time.  
GETDEVLIST retrieves access information for the storage nodes 
in the underlying parallel file system. 

LAYOUTGET:  Issued after opening a file but before accessing 
file data.  LAYOUTGET retrieves file access information for a 
byte-range of a file.  Layouts apply to an entire file, are stored in 
a file’s inode, and are valid for the lifetime of the inode. 

LAYOUTCOMMIT: Issued after file I/O.  LAYOUTCOMMIT 
informs the NFSv4.1 server of changes to file metadata such as a 
possible extension of the file size. 

6. EVALUATION 
In this section we asses the performance and I/O workload versa-
tility of Direct-pNFS.  We first use the IOR micro-benchmark 
[27] to demonstrate the scalability and performance of Direct-
pNFS compared with PVFS2, the pNFS file-based storage proto-
col with two- and three-tiers, and NFSv4.  To explore the versatil-
ity of Direct-pNFS, we use two scientific I/O benchmarks and 
two macro benchmarks to represent a variety of access patterns to 
large storage systems. 

6.1. Experimental Setup 
All experiments use a sixteen-node cluster connected via gigabit 
Ethernet with jumbo frames.  One exception is the experiment in 
Figure 6c, which uses 100 Mbps Ethernet.  To ensure a fair com-
parison between architectures, we keep the number of nodes and 
disks in the back end constant.  The PVFS2 1.5.1 file system has 
six storage nodes, with one storage node doubling as a metadata 
manager, and a 2 MB stripe size.  The pNFS three-tier architec-
ture uses three NFSv4.1 servers and three PVFS2 storage nodes.  
For the three-tier architecture, we move the disks from the data 
servers to the storage nodes.  All NFS experiments use eight 
server threads and 2 MB wsize and rsize.  All nodes run Linux 
2.6.17. 

Parallel File System:  Each PVFS2 storage node is equipped with 
dual 1.7 GHz P4 processors, 2 GB memory, one Seagate 80 GB 
7200 RPM hard drive with Ultra ATA/100 interface and 2 MB 
cache, and one 3Com 3C996B-T gigabit card. 

Client System:  Client nodes one through seven are equipped with 
dual 1.3 GHz P3 processors, 2 GB memory, and an Intel Pro gi-
gabit card.  Client nodes eight and nine have the same configura-
tion as the storage nodes. 

6.2. Scalability and Performance 
Our first set of experiments use the IOR benchmark to compare 
the scalability and performance of Direct-pNFS, PVFS2, two- and 
three-tier file-based pNFS, and NFSv4.  Clients sequentially read 
and write separate 500 MB files as well as disjoint 500 MB por-
tion of a single file.  To view the effect of I/O request size on 
performance, the experiments use a large block size (2 to 4 MB) 
and a small block size (8 KB).  Read experiments use a warm 
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Figure 4.  Direct-pNFS architecture.  Direct-pNFS eliminates overlapping I/O and metadata protocols and uses the NFSv4 storage 
protocol to directly access parallel file system (PFS) storage nodes.  The parallel file system uses a layout translator to converts its lay-
out into a pNFS file-based layout.  A Direct-pNFS client may use an aggregation driver to support specialized file striping methods. 



 

server cache.  The presented value is the average over several 
executions of the benchmark 

Figures 6a and 6b display the maximum aggregate write through-
put with separate files and a single file.  Direct-pNFS matches the 
performance of PVFS2, reaching a maximum aggregate write 
throughput of 119.2 MB/s and 110 MB/s for separate and single 
file experiments. 

pNFS-3tier write performance levels off at 83 MB/s with four 
clients.  pNFS-3tier splits the six available servers into data serv-
ers and storage nodes, which cuts the maximum network band-
width in half relative to the other pNFS and PVFS2 architectures.  
In addition, using two disks in each storage node does not offer 
twice the disk bandwidth of a single disk due to the constant level 
of CPU, memory, and bus bandwidth. 

Lacking direct data access, pNFS-2tier incurs a write delay and 
performs a little worse than Direct-pNFS and PVFS2.  Transfer-
ring data between data servers restricts the maximum bandwidth 
between pNFS clients and data servers.  This is not visible in 
Figures 6a and 6b because network bandwidth exceeds disk 
bandwidth, so Figure 6c repeats the multiple file write experi-
ments with 100 Mbps Ethernet.  Using a slower network, pNFS-
2tier yields only half the performance of Direct-pNFS and 
PVFS2, clearly illustrating the network bottleneck of pNFS-2tier. 

Figures 6d and 6e display the aggregate write throughput with 
separate files and a single file using an 8 KB block size.  The 
performance for all NFSv4-based architectures is unaffected from 
the large block size experiments due to the NFSv4 client write 
back cache, which combines write requests until they reach the 
NFSv4 wsize (2 MB in our experiments).  However, the perform-
ance of PVFS2, a parallel file system designed for large I/O, de-
creases dramatically with small block sizes, reaching a maximum 
aggregate write throughput of 39.4 MB/s. 

Figures 7a and 7b display the maximum aggregate read through-
put with separate files and a single file.  With separate files, Di-
rect-pNFS matches the performance of PVFS2, reaching a maxi-
mum aggregate read throughput of 509 MB/s.  With a single file, 
PVFS2 has lower throughput than Direct-pNFS with only a few 

clients, but outperforms Direct-pNFS with eight clients, reaching 
a maximum aggregate read throughput of 530.7 MB/s.  Direct-
pNFS places the NFSv4 and PVFS2 server modules on the same 
node, placing higher demand on server resources.  In addition, 
PVFS2 uses a fixed number of buffers to transfer data between 
the kernel and the user-level storage daemon, creating an addi-
tional bottleneck. 

The division of the six available servers between data servers and 
storage nodes in pNFS-3tier limits its maximum performance 
again, achieving a maximum aggregate bandwidth of only 115 
MB/s.  NFSv4 aggregate performance is flat, limited to the band-
width of a single server. 

The pNFS-2tier bandwidth bottleneck is readily visible in Figures 
7a and 7b, where disk bandwidth is no longer a factor.  Each data 
server is not only responding to client read requests and but also 
transferring data to other data servers so they can satisfy their 
client read requests.  Sending data to multiple targets limits each 
data server’s maximum read bandwidth. 

Figures 7c and 7d display the aggregate read throughput with 
separate files and a single file using an 8 KB block size.  The 
performance for all NFSv4-based architectures is unaffected from 
the large block size experiments due to the use of the Linux page-
cache and readahead algorithm.  The performance of PVFS2 
again decreases dramatically with small block sizes, reaching a 
maximum aggregate read throughput of 51 MB/s. 

6.2.1. Discussion 
In the write experiments, Direct-pNFS and PVFS2 fully utilize 
the available disk bandwidth.  In the read experiments, data are 
read directly from the server cache, so the disks are not a bottle-
neck.  Instead, client and server CPU performance becomes the 
limiting factor.  The pNFS-2tier architecture offers comparable 
performance with fewer clients, but is limited by network band-
width as we increase the number of clients.  The pNFS-3tier ar-
chitecture demonstrates that using intermediary data servers to 
access data is inefficient: those resources are better used as stor-
age nodes. 
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Figure 5.  Direct-pNFS prototype architecture with PVFS2.  The PVFS2 metadata server converts the PVFS2 layout into a 
pNFS file-based layout, which is passed to the pNFS server and then to the Direct-pNFS file-based layout driver.  The pNFS data 
server uses the PVFS2 client as a conduit to retrieve data from the local PVFS2 storage daemon.  Data servers do not communicate. 



 

6.3. Scientific Application Benchmarks 
This section uses two scientific benchmarks to analyze Direct-
pNFS in the high-performance arena. 

6.3.1. ATLAS 
ATLAS [28] is a particle physics experiment under construction 
at CERN.  The ATLAS detector can detect one billion events per 
second with a combined data volume of 40 TB — or a PB every 
25 seconds! — so ATLAS scientists are performing large-scale 
simulations of the detector to develop real-time event filtering 
algorithms to reduce the volume of data.  After filtering, data 
from fewer than one hundred events per second will be distributed 
for offline analysis. 

The ATLAS simulation runs in four stages; the Digitization 
stage simulates detector data generation.  With 500 events, Dig-
itization spreads approximately 650 MB randomly over a 
single file.  While 95 percent of the requests are less than 275 KB, 
95 percent of the data are written in requests greater than or equal 
to 275 KB.  Each client writes to a separate file. 

To evaluate Digitization write throughput we used IOZone 
to replay the write trace data for 500 events.  Each client writes to 
a separate file. 

Figure 8a shows that Direct-pNFS can manage efficiently the mix 
of small and large write requests, achieving an aggregate write 
throughput of 102.5 MB/s with eight clients.  While small write 
requests reduce the maximum write throughput achievable by 
Direct-pNFS by approximately 14 percent, they severely reduce 
the performance of PVFS2, which achieves only 41 percent of its 
maximum aggregate write throughput. 

6.3.2. NAS Parallel Benchmark 2.4 – BTIO 
The NAS Parallel Benchmarks (NPB) are used to evaluate the 
performance of parallel supercomputers.  The BTIO benchmark is 
based on a CFD code.  We use the class A problem set, which 
performs 200 time steps, checkpoints data every five time steps, 
and generates a 400 MB checkpoint file.  The version of the 
benchmark used in this paper uses MPI-IO collective buffering, 
which increases the I/O request size to one MB and greater.  The 
benchmark times also include the ingestion and verification of the 
result file. 

BTIO performance experiments are shown in Figure 8b.  BTIO 
running time is approximately the same for Direct-pNFS and 
PVFS2.  With nine clients, the running time of Direct-pNFS is 
five percent longer due to the fixed number of buffers in PVFS2 
(as discussed in Section 6.2). 

6.4. Synthetic Workloads 
This section uses two macro-benchmarks to analyze Direct-pNFS 
in a more general setting. 

6.4.1. OLTP 
OLTP models a database workload as a series of transactions on a 
single large file.  Each transaction consists of a random 8 KB 
read, modify, and write.  Each client performs 20,000 transac-
tions, with data sent to stable storage after each transaction. 

Figure 8c displays OLTP experimental results.  Direct-pNFS 
scales well, achieving 26 MB/s with eight clients.  As expected, 
PVFS2 performs poorly with small I/O requests, achieving an 
aggregate I/O throughput of 6 MB/s.  
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Figure 6.  Aggregate write throughput.  (a) and (b) With a separate or single file and a large block size, Direct-pNFS scales with 
PVFS2 while pNFS-2tier suffers from a lack of direct file access.  pNFS-3tier and NFSv4 are CPU limited.  (c) With separate files 
and 100 Mbps Ethernet, pNFS-2tier is bandwidth limited due to its need to transfer data between data servers.  (d) and (e) With a 
separate or single file and an 8 KB block size, all NFSv4 architectures outperform PVFS2. 



 

6.4.2. Postmark 
The Postmark benchmark simulates metadata and small I/O inten-
sive applications such as electronic mail, NetNews, and Web-
based services [29].  Postmark performs transactions on a large 
number of small randomly sized files (between 1 KB and 500 
KB).  Each transaction first deletes, creates, or opens a file, then 
reads or appends 512 bytes.  Data are sent to stable storage before 
the file is closed.  Postmark performs 2,000 transactions on 100 
files in 10 directories.  All other parameters are left as default.  To 
ensure a more even distribution of requests among the storage 
nodes, we reduce the stripe size, wsize, and rsize to 64 KB. 

The Postmark experiments are shown in Figure 8d, with results 
given in transactions per second.  Direct-pNFS again leverages 
the asynchronous, multi-threaded Linux NFSv4 implementation, 
designed for small I/O intensive workloads like Postmark, to per-
form up to 36 times as many transactions per second as PVFS2. 

6.4.3. Discussion 
This set of experiments demonstrates that Direct-pNFS perform-
ance compares well to the exported parallel file system with the 
large I/O scientific application benchmark BTIO.  Direct-pNFS 
performance for ATLAS, for which 95% of the I/O requests are 
smaller than 275 KB, far surpasses native file system perform-
ance.  The Postmark and OLTP benchmarks, where small I/O 
requests also dominate, yield similar results. 

A natural next step is to explore performance with routine tasks 
such as a build/development environment.  Following the SSH 
build benchmark [30], we created a benchmark that uncom-

presses, configures, and builds OpenSSH [31].  Using the same 
systems as above, we find that Direct-pNFS reduces compilation 
time, a stage heavily dominated by small read and write requests, 
but increases uncompress and configure time, stages dominated 
by file creates and attribute updates. 

Tasks like file creation—relatively simple for standalone file 
systems—become complex on parallel file systems.  Conse-
quently, some parallel file systems distribute metadata across 
many nodes and have clients gather and reconstruct the informa-
tion, relieving the overloaded metadata server.  NFSv4 relies on a 
central metadata server, effectively recentralizing the decentral-
ized parallel file system metadata protocol.  This paper does not 
focus on improving metadata performance, but the sharp contrast 
in metadata management technique between NFSv4 and parallel 
file systems merits further study.  

7. RELATED WORK 
Unlike much recent work that focuses on improving the perform-
ance and scalability of a single file system, e.g., GPFS-WAN [32, 
33], Google file system [34], Gfarm [35], and FARSITE [36], the 
goal of Direct-pNFS is to enhance a commodity protocol to scale 
I/O throughput to a diversity of parallel file systems. 

Several file systems aggregate NFS servers into a single file sys-
tem image [37-39].   Direct-pNFS generalizes these architectures, 
making them independent of the underlying parallel file system. 

NFS-CD [40] uses NFSv4 delegations and cooperative caching to 
enable client data sharing without server involvement.  NFS-CD 
and Direct-pNFS address different but related issues.  NFS-CD 
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Figure 7.  Aggregate read throughput.  (a) With separate files and a large block size, Direct-pNFS outperforms PVFS2 for some 
numbers of clients.  pNFS-2tier and pNFS-3tier are bandwidth limited due to a lack of direct file access.  NFSv4 is bandwidth and 
CPU limited.  (b) With a single file and a large block size, PVFS2 eventually outperforms Direct-pNFS due to a prototype software 
limitation.  pNFS-2tier and pNFS-3tier are bandwidth limited due to a lack of direct file access.  NFSv4 is CPU limited.  (c) and (d) 
With a separate or single file and an 8 KB block size, all NFSv4 architectures outperform PVFS2. 



 

can improve the effective runtime of an application, but clients 
must access physical storage at some point.  Cooperative caching 
can be used together with the increased I/O throughput of Direct-
pNFS, combining the performance benefits of both approaches.   

GridFTP [41] is used extensively in the Grid to enable high 
throughput, operating system independent, and secure remote 
access to parallel file systems.  Successful and popular, GridFTP 
nevertheless has some serious limitations: it copies data instead of 
providing shared access to a single copy, complicating its consis-
tency model and decreasing storage capacity; lacks a global 
namespace; and is difficult to integrate with the local file system. 

The Storage Resource Broker [42] aggregates storage resources 
into a single data catalogue, but does not support parallel I/O to 
multiple storage endpoints and uses a customized interface. 

A PVFS2 layout driver has existed since 2004 [8] and file-based 
layout drivers have been demonstrated with GPFS, Lustre, and 
PVFS2.  Panasas object and EMC block drivers are also under 
development.  Earlier pNFS research improved overall write per-
formance by using direct, parallel I/O for large write requests and 
a distributed file access protocol for small write requests [17].  
This technique still benefits file systems whose storage nodes 
cannot interpret the NFSv4 storage protocol.  Direct-pNFS uses a 
single storage protocol, allowing more efficient request gathering, 
and eliminates the single server bottleneck. 

8. CONCLUDING REMARKS 
Universal, transparent, and scalable remote data access is a criti-
cal enabling feature of widely distributed collaborations.  Existing 
remote data access technologies such as NFS, pNFS, and 
GridFTP fail to satisfy all three of these requirements. 

Direct-pNFS, on the other hand, satisfies these requirements by 
enhancing the portability and transparency of pNFS.  Direct-
pNFS enables a stock NFSv4.1 client to support high-
performance remote data access to different parallel file systems.  
Experiments demonstrate that Direct-pNFS matches the I/O 
throughput of the specialized parallel file system that it exports.  
Furthermore, Direct-pNFS “scales down” to outperform the paral-
lel file system client in diverse workloads. 
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