

Direct-pNFS: Scalable, transparent, and versatile
access to parallel file systems

Dean Hildebrand
University of Michigan

dhildebz@eecs.umich.edu

Peter Honeyman
University of Michigan

honey@citi.umich.edu

ABSTRACT
Grid computations require global access to massive data stores.
To meet this need, the GridNFS project aims to provide scalable,
high-performance, transparent, and secure wide-area data man-
agement as well as a scalable and agile name space.

While parallel file systems give high I/O throughput, they are
highly specialized, have limited operating system and hardware
platform support, and often lack strong security mechanisms.
Remote data access tools such as NFS and GridFTP overcome
some of these limitations, but fail to provide universal, transpar-
ent, and scalable remote data access.

As part of GridNFS, this paper introduces Direct-pNFS, which
builds on the NFSv4.1 protocol to meet a key challenge in access-
ing remote parallel file systems: high-performance and scalable
data access without sacrificing transparency, security, or portabil-
ity. Experiments with Direct-pNFS demonstrate I/O throughput
that equals or outperforms the exported parallel file system across
a range of workloads.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance – measurements.

General Terms
Performance, Design, Experimentation

Keywords
Parallel I/O, NFSv4, pNFS, Distributed File System

1. INTRODUCTION
The GridNFS project aims to facilitate large data sets in the Grid
by providing scalable name space management and by developing
the means for scalable, transparent, and secure data access. To
meet performance requirements, GridNFS may need to use all
available bandwidth provided by a parallel file system’s storage
nodes. In addition, GridNFS must be able to provide simultane-
ous, parallel access to a single file from many clients, a common
requirement of high-energy physics applications.

Parallel file systems feature impressive throughput, but they are
highly specialized, have limited operating system and hardware
platform support, and often lack strong security mechanisms. In
addition, while parallel file systems excel at large data transfers,
many do so at the expense of small I/O performance. While large
data transfers dominate many scientific applications, many work-
load characterization studies highlight the prevalence of small,
sequential I/O requests in modern scientific applications [1-3].

Many application domains demonstrate the need for high band-
width, concurrent, and secure access to large datasets across a
variety of platforms and file systems. Scientific computing that
connects large computational and data facilities across the globe
can generate petabytes of data. Digital movie studios that gener-
ate terabytes of data every day require access from compute clus-
ters and Sun, Windows, SGI, and Linux workstations [4]. This
need for heterogeneous data access produces a tension between
parallel file systems and application platforms. Distributed file
access protocols such as NFS [5] and CIFS [6] bridge the interop-
erability gap, but they are unable to deliver the superior perform-
ance of a parallel file system.

pNFS, an integral part of NFSv4.1 [7], overcomes these grand
challenge-scale obstacles by enabling direct NFSv4.1 client ac-
cess to storage while preserving operating system, hardware plat-
form, and parallel file system independence. pNFS provides file
access scalability by using the storage protocol of the underlying
parallel file system to distribute I/O across the bisectional band-
width of the storage network between clients and storage devices,
removing the single server bottleneck so vexing to client/server-
based systems. In combination, the elimination of the single
server bottleneck and direct storage access by clients yields supe-
rior remote file access performance and scalability [8].

Regrettably, pNFS does not retain NFSv4 file system access
transparency and can therefore not shield applications from dif-
ferent parallel file system security protocols and metadata and
data consistency semantics. In addition, implementing pNFS
support for every storage protocol on every operating system and
hardware platform is a colossal undertaking. File systems that
support standard storage protocols may be able to share develop-
ment costs, but full support for a particular protocol is often unre-
alized, hampering interoperability. The pNFS file-based storage
protocol bridges this transparency gap with middle-tier data serv-
ers, but eliminates direct data access, which can hurt performance.

1.1. Contributions
This paper introduces Direct-pNFS, a novel augmentation to
pNFS that increases portability and regains parallel file system
access transparency while continuing to match the performance of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006...$5.00.

native parallel file system clients. Architecturally, Direct-pNFS
uses the NFSv4 storage protocol for direct access to a parallel file
system’s storage nodes. In addition, Direct-pNFS leverages the
strengths of NFSv4.1 to improve I/O performance over the entire
range of I/O workloads. We know of no other file access protocol
that offers this level of performance, scalability, file system ac-
cess transparency, and file system independence.

Direct-pNFS makes the following contributions:
Heterogeneous and ubiquitous remote parallel file system
access. Direct-pNFS benefits are available with an unmodified
NFSv4.1 client and does not require file system specific layout
drivers, e.g., object [9] or PVFS2 [8].
Remote parallel file system access transparency and inde-
pendence. pNFS uses parallel file system-specific storage proto-
cols, which can expose gaps in the underlying file system seman-
tics (such as security support). Direct-pNFS, on the other hand,
retains NFSv4 file system access transparency by using the
NFSv4 storage protocol for data access. In addition, Direct-pNFS
can provide remote access to any parallel file system since it does
not interpret file system-specific information.
I/O workload versatility. While distributed file systems and file
access protocols are usually engineered to perform well on small
data accesses [10], parallel file systems target large data transfers.
Direct-pNFS combines the strengths of both, providing high-
performance data access to the small and large data requests in
scientific workloads.
Scalability and throughput. To realize the performance of ex-
ported parallel file systems, conventional pNFS prototypes are
forced to support the exported storage protocol [8]. Direct-pNFS,
on the other hand, can match the performance of the exported
parallel file system without requiring support for any protocol
other than NFSv4.1. This paper uses numerous benchmarks to
demonstrate that Direct-pNFS matches the I/O throughput of a
parallel file system, and has superior performance in workloads
that contain many small I/O requests.
A case for commodity high-performance remote data access.
Direct-pNFS complies with emerging IETF standards and uses an
unmodified NFSv4.1 client. This paper makes a case for open
systems in the design of high-performance clients, demonstrating
that standards-compliant commodity software can deliver the
performance of a non-standards based parallel file system client.

The remainder of this paper is organized as follows. Section 2
makes the case for open systems in distributed data access. Sec-
tion 3 reviews pNFS and its departure from traditional cli-
ent/server distributed file access protocols. Sections 4 and 5 de-
scribe the Direct-pNFS architecture and our Linux prototype.
Section 6 reports the results of experiments with micro-
benchmarks and four different I/O workloads. Section 7 dis-
cusses related work. We summarize and conclude in Section 8.

2. COMMODITY HIGH-PERFORMANCE
REMOTE DATA ACCESS

NFS owes its success to an open protocol, platform ubiquity, and
transparent access to file systems, independent of the underlying
storage technology. Beyond performance and scalability, remote
data access requires all these properties for success in Grid, clus-
ter, enterprise, and personal computing.

The benefits offered by Direct-pNFS or any other standards-based
remote data access protocol are numerous. A single client can
access data within a LAN and across a WAN, reducing the cost of
development, administration, and support. System administrators
can select a storage solution with confidence that regardless of the
operating system and hardware platform, users are able to access
the data. In addition, storage vendors are free to focus on ad-
vanced data management features such as fault tolerance, archiv-
ing, manageability, and scalability without having to custom tai-
lor their products across a broad spectrum of client platforms.

3. SCALABLE I/O WITH pNFS
This section summarizes and evaluates the pNFS architecture. A
full description can be found elsewhere [7, 8].

3.1. pNFS Overview
pNFS, an integral part of NFSv4.1, transforms NFSv4 into a het-
erogeneous metadata protocol. pNFS clients and servers are re-
sponsible for control and file management operations, but dele-
gate I/O functionality to a storage-specific layout driver on the
client. By separating control and data flows, pNFS clients can
fully saturate the available bandwidth of the parallel file system.

Figure 1 displays the pNFS architecture. The control path con-
tains all NFSv4.1 operations and features, continuing to use
RPCSEC_GSS for authentication and NFSv4 ACLs (a super set
of POSIX ACLs) for authorization. The data path can support
any storage protocol, but the IETF design effort focuses on file-,
object-, and block-based storage protocols.

pNFS adds a layout driver and an I/O driver to the standard
NFSv4 architecture. The layout driver interprets and utilizes the
opaque layout information returned from the pNFS server. A
layout contains the information required to access any byte range
of a file. In addition, a layout may contain file system specific
access information. For example, the object-based layout driver
requires the use of OSD access control capabilities [11]. To per-
form direct and parallel I/O, a pNFS client first requests layout
information from the pNFS server. The layout driver uses the
information to translate read and write requests from the pNFS
client into I/O requests directed to storage devices. For example,
the NFSv4.1 file-based storage protocol stripes files across
NFSv4.1 data servers; only READ, WRITE, COMMIT, and ses-

S e r v e r

L a y o u t

I / O

C l i e n t

L a y o u t
D r i v e r Pa ra l l e l I /O

N F S v 4 . 1 I / O a n d M e t a d a t a
S t o r a g e
N o d e s

p N F S
C l i e n t I /O

D r i v e r

Pa ra l l e l
F i l e

S y s t e m

L a y o u t

C o n t r o l
F l o w

p N F S
S e r v e r

Figure 1. pNFS architecture. pNFS splits the NFSv4 proto-
col into control and data paths and adds a layout and I/O
driver. The NFSv4.1 protocol governs the control path. To
use the data path, a pNFS client obtains an opaque layout
from a pNFS server and hands it off to the layout driver,
which uses a storage-specific protocol to provide direct and
parallel data access.

sion operations are used on the data path. The pNFS server can
generate layout information itself or, for non-NFSv4.1 file-based
layouts, request assistance from the underlying file system. The
I/O driver performs I/O, e.g., iSCSI [12], to the storage nodes.

3.2. Hybrid File System Semantics
Although parallel file systems separate control and data flows,
there is tight integration of the control and data protocols. Users
must adapt to different semantics for each data repository. pNFS,
on the other hand, allows applications to realize common file
system semantics across data repositories. As users access het-
erogeneous data repositories with pNFS, the NFSv4.1 metadata
protocol provides a degree of consistency with respect to the file
system semantics within each repository.

Unfortunately, certain semantics are layout driver and storage
protocol dependent, and they can drastically change application
behavior. For example, Panasas Activescale [13] supports the
OSD security protocol [11], while Lustre [14] supports a special-
ized security protocol. This forces clients that need to access both
parallel file systems to support multiple authentication, integrity,
and privacy mechanisms. Additional examples of these semantics
include client caching, and fault tolerance.

3.3. Burden of Layout Driver Development
Layout and I/O drivers are the workhorses of pNFS high-
performance data access. These specialized components under-
stand the parallel file system’s storage protocol, security protocol,
file system semantics, device identification, and layout descrip-
tion and management. For pNFS to achieve broad heterogeneous
data access, layout and I/O drivers must be developed and sup-
ported on a multiplicity of operating system and hardware plat-
forms—an effort comparable in magnitude to the development of
a parallel file system client.

3.4. The pNFS File-Based Storage Protocol
Currently, the IETF is developing three storage protocols: file,
object, and block. The NFSv4.1 protocol includes only the file-
based storage protocol, with object and block to follow in sepa-
rate specifications [9, 15]. As such, all NFSv4.1 implementations
will support the file-based storage protocol, while support for
object and block storage protocols will be optional.

A file-based layout governs an entire file and is valid until re-
called by the pNFS server. To perform data access, the file-based
layout driver combines the layout information with a known list
of data servers for the file system, and sends READ, WRITE, and
COMMIT operations to the correct data servers. Once I/O is
complete, the client sends updated file metadata, e.g., size or
modification time, to the pNFS server.

pNFS file-based layout information consists of:
• Aggregation type and stripe size
• Data server identifiers
• File handles (one for each data server)
• Policy parameters

Figure 2 illustrates how the pNFS file-based storage protocol
provides access to a parallel file system (parallel FS). pNFS cli-
ents access pNFS data servers that export parallel FS clients,
which in turn access data from parallel FS storage nodes and
metadata from parallel FS metadata servers. A parallel FS man-
agement protocol binds metadata servers and storage, providing a
consistent view of the file system. pNFS clients use NFSv4 for
I/O while parallel FS clients use the parallel FS storage protocol.

3.4.1. Performance Issues
Architecturally, the pNFS file-based storage protocol offers some
latitude. As shown in Figure 2, while pNFS clients always access
remote pNFS servers, we can configure the exported parallel FS
to create two- and three-tier architectures. The three-tier architec-
ture separates parallel FS clients and storage nodes, while the

p N F S C l i e n t

L a y o u t

I / O

N F S v 4 . 1 I / O
a n d

M e t a d a t a

K e r n e l

U s e r

p N F S
C l i e n t

A p p l i c a t i o n

p N F S M e t a d a t a S e r v e r

C o n t r o l

K e r n e l

U s e r

p N F S
S e r v e r

P F S
C l i e n t

F i l e L a y o u t
D r i v e r

I /O
D r i v e r

N F S v 4
Para l l e l I /O

P F S
M a n a g e m e n t P r o t o c o l

P F S
M e t a d a t a

P F S
M e t a d a t a

M g m t
D a e m o n

P F S
S t o r a g e

K e r n e l

U s e r

K e r n e l

U s e r

P F S
M e t a d a t a

S e r v e r

D a t a S e r v e r s

K e r n e l

U s e r

p N F S
S e r v e r

P F S
C l i e n t

I / O

K e r n e l

U s e r

p N F S
S e r v e r

P F S
C l i e n t

I / O

P F S
Para l l e l I /O

M g m t
D a e m o n

P F S
S t o r a g e

K e r n e l

U s e r

S t o r a g e

D a t a S e r v e r s

(3 - t i e r p N F S)

(2 - t i e r p N F S)

F l o w

Figure 2. pNFS file-based architecture. A pNFS file-based system consists of pNFS data servers, clients and a metadata server,
plus parallel file system (PFS) storage nodes, clients, and metadata servers. The three-tier design prevents direct storage access and
creates overlapping and redundant storage and metadata protocols. The two-tier design, which places pNFS servers and the exported
parallel file system clients on storage nodes, suffers from these problems plus diminished single client bandwidth.

two-tier architecture couples parallel FS clients and storage on the
same node. Figure 3 demonstrates how neither choice features
direct data access: the three-tier architecture has intermediary data
servers while with two-tiers, striped data is transferred between
data servers, reducing the available bandwidth to the pNFS client.
These architectures can improve NFS scalability, but the lack of
direct data access—a primary benefit of pNFS—scuttles perform-
ance [16].

Block size mismatches and overlapping metadata protocols also
diminish performance. If the pNFS block size is greater than the
parallel FS block size, a large pNFS data request produces extra
parallel FS data requests, each incurring a fixed amount of over-
head [17]. Conversely, a small pNFS data request forces a large
parallel FS data request, unnecessarily taxing storage resources
and delaying the pNFS request. pNFS file system metadata re-
quests to the pNFS server, e.g., file size, layout information, be-
come parallel FS client metadata requests to the parallel FS meta-
data server. This ripple effect increases overhead and delay for
pNFS metadata requests.

It is hard to address these remote access inefficiencies with fully
connected block-based parallel file systems, e.g., GPFS [18], GFS
[19, 20], and PolyServe Matrix Server [21], but for parallel file
systems whose storage nodes admit NFSv4 servers, Direct-pNFS
offers a solution.

4. DIRECT-pNFS
Direct-pNFS supports direct data access—without requiring a
storage-specific layout driver on every operating system and
hardware platform—by exploiting file-based layouts to describe
the exact distribution of data on the storage nodes. Since a Di-
rect-pNFS client knows the exact location of a file’s contents, it
can target I/O requests to the correct data servers. Direct-pNFS
supports direct data access to any parallel file system that allows
NFSv4 servers on its storage nodes—such as object based [13,
14], PVFS2 [22], and IBRIX Fusion [23]—and inherits the opera-
tional, fault tolerance, and security semantics of NFSv4.1.

4.1. Architecture
In the two- and three-tier pNFS file-based architectures shown in
Figure 2, the underlying layout is unknown to pNFS clients. This
forces them to distribute I/O requests among data servers without
regard for the actual location of the data. To overcome this inef-
ficient access, Direct-pNFS, shown in Figure 4, uses a layout
translator to convert a parallel FS layout into a pNFS file-based
layout. This provides Direct-pNFS clients with accurate knowl-
edge of the underlying layout of data on storage. A pNFS server,
which exists on every parallel FS data server, can now satisfy
Direct-pNFS client data requests by simply accessing the local
parallel FS storage component. Direct-pNFS and parallel FS
metadata components also co-exist on the same node, which
eliminates remote parallel FS metadata requests from the pNFS
server.

In combination, the use of accurate layout information and the
placement of pNFS servers on parallel FS storage and metadata
nodes eliminates extra parallel FS data and metadata requests and
obviates the need for data servers to support the parallel FS stor-
age protocol altogether. The use of a single storage protocol also
eliminates block size mismatches between storage protocols.

4.2. Layout Translator
To give Direct-pNFS clients exact knowledge of the underlying
layout, a parallel FS uses the layout translator to specify a file’s
storage nodes, file handles, aggregation type, and policy parame-
ters. The layout translator gathers this information and creates a
pNFS file-based layout. The layout translator is independent of
the underlying parallel FS and does not interpret parallel FS lay-
out information.

The overhead in using the layout translator is small and confined
to the metadata server. For example, our Linux prototype has the
pNFS server specify the required file handles. The parallel FS
needs to provide the layout translator with only the aggregation
type and parameters, e.g., stripe size.

4.3. Optional Aggregation Drivers
It is impossible for the NFSv4.1 protocol (and hence NFSv4.1
clients) to support every method of distributing data among the
storage nodes. At this writing, the NFSv4.1 protocol supports two
aggregation schemes: round-robin striping and a second method
that specifies a list of devices that form a cyclical pattern for all
stripes in the file. To broaden support for unconventional aggre-
gation schemes such as variable stripe size [24] and replicated or
hierarchical striping [25, 26], Direct-pNFS also supports optional
“pluggable” aggregation drivers. An aggregation driver provides
a compact way for the Direct-pNFS client to understand how the
underlying parallel FS maps file data onto the storage nodes.

Aggregation drivers are operating system and platform independ-
ent, and are based on the distribution drivers in PVFS2, which use
a standard interface to adapt to most striping schemes. Although
aggregation drivers are non-standard components, their develop-
ment effort is minimal compared to the effort required to develop
an entire layout driver.

(a) three-tier

(b) two-tier

Figure 3. Indirect pNFS file-based data access. (a) Three-
tier file-based pNFS uses intermediary data servers that block
direct access to parallel file system storage nodes. (b) Two-
tier file-based pNFS data servers must communicate to access
both local and remote parallel file system storage nodes.

5. DIRECT-pNFS PROTOTYPE
We implemented a Direct-pNFS prototype that maintains strict
agnosticism of the underlying parallel file system and, as we shall
see, matches the performance of the parallel file system that it
exports. Figure 5 displays the architecture of our Direct-pNFS
prototype, using PVFS2 for the exported file system.

PVFS2 is a user-level, open-source, scalable, parallel file system
designed for the large data needs of scientific applications in re-
search and production environments. PVFS2 uses large transfer
buffers, supports limited request parallelization, incurs a substan-
tial per-request overhead, and does not use a client data or write
back cache. A kernel module allows integration into a user’s
environment and access by other file systems such as NFS.

Many scientific applications can re-create lost data, so PVFS2
buffers data on storage nodes and sends the data to stable storage
only when necessary or at the application’s request (fsync). To
match this behavior, our Direct-pNFS departs from the NFSv4
protocol, committing data to stable storage only when an applica-
tion issues an fsync or closes the file.

At this writing, the user-level PVFS2 storage daemon does not
support direct VFS access. Instead, the Direct-pNFS data servers
simulate direct storage access by way of the existing PVFS2 cli-
ent and the loopback device. The PVFS2 client on the data serv-
ers functions solely as a conduit between the NFSv4 server and
the PVFS2 storage node on the node.

Our Direct-pNFS prototype uses special NFSv4 StateIDs for ac-
cess to the data servers, round-robin striping as its aggregation
scheme, and the following NFSv4.1 operations:

GETDEVLIST: Issued at file system mount time.
GETDEVLIST retrieves access information for the storage nodes
in the underlying parallel file system.

LAYOUTGET: Issued after opening a file but before accessing
file data. LAYOUTGET retrieves file access information for a
byte-range of a file. Layouts apply to an entire file, are stored in
a file’s inode, and are valid for the lifetime of the inode.

LAYOUTCOMMIT: Issued after file I/O. LAYOUTCOMMIT
informs the NFSv4.1 server of changes to file metadata such as a
possible extension of the file size.

6. EVALUATION
In this section we asses the performance and I/O workload versa-
tility of Direct-pNFS. We first use the IOR micro-benchmark
[27] to demonstrate the scalability and performance of Direct-
pNFS compared with PVFS2, the pNFS file-based storage proto-
col with two- and three-tiers, and NFSv4. To explore the versatil-
ity of Direct-pNFS, we use two scientific I/O benchmarks and
two macro benchmarks to represent a variety of access patterns to
large storage systems.

6.1. Experimental Setup
All experiments use a sixteen-node cluster connected via gigabit
Ethernet with jumbo frames. One exception is the experiment in
Figure 6c, which uses 100 Mbps Ethernet. To ensure a fair com-
parison between architectures, we keep the number of nodes and
disks in the back end constant. The PVFS2 1.5.1 file system has
six storage nodes, with one storage node doubling as a metadata
manager, and a 2 MB stripe size. The pNFS three-tier architec-
ture uses three NFSv4.1 servers and three PVFS2 storage nodes.
For the three-tier architecture, we move the disks from the data
servers to the storage nodes. All NFS experiments use eight
server threads and 2 MB wsize and rsize. All nodes run Linux
2.6.17.

Parallel File System: Each PVFS2 storage node is equipped with
dual 1.7 GHz P4 processors, 2 GB memory, one Seagate 80 GB
7200 RPM hard drive with Ultra ATA/100 interface and 2 MB
cache, and one 3Com 3C996B-T gigabit card.

Client System: Client nodes one through seven are equipped with
dual 1.3 GHz P3 processors, 2 GB memory, and an Intel Pro gi-
gabit card. Client nodes eight and nine have the same configura-
tion as the storage nodes.

6.2. Scalability and Performance
Our first set of experiments use the IOR benchmark to compare
the scalability and performance of Direct-pNFS, PVFS2, two- and
three-tier file-based pNFS, and NFSv4. Clients sequentially read
and write separate 500 MB files as well as disjoint 500 MB por-
tion of a single file. To view the effect of I/O request size on
performance, the experiments use a large block size (2 to 4 MB)
and a small block size (8 KB). Read experiments use a warm

D i r e c t - p N F S C l i e n t

L a y o u t

I / O

K e r n e l

U s e r

p N F S
C l i e n t

A p p l i c a t i o n

F i l e L a y o u t
D r i v e r

I /O
D r i v e r

p N F S
S e r v e r

D a t a S e r v e r s

I / O

N F S v 4
Para l l e l I /O

N F S v 4 . 1 I / O
a n d

M e t a d a t a

M e t a d a t a S e r v e r

F i l e
L a y o u t

C o n t r o l F l o w

K e r n e l

U s e r

p N F S
S e r v e r P F S

M a n a g e m e n t P r o t o c o l

M g m t
D a e m o n

P F S
S t o r a g e

K e r n e l

U s e r

O p t i o n a l
A g g r e g a t i o n

D r i v e r

P F S
M e t a d a t a

S e r v e r

L a y o u t
T r a n s l a t o r

P F S
L a y o u t

Figure 4. Direct-pNFS architecture. Direct-pNFS eliminates overlapping I/O and metadata protocols and uses the NFSv4 storage
protocol to directly access parallel file system (PFS) storage nodes. The parallel file system uses a layout translator to converts its lay-
out into a pNFS file-based layout. A Direct-pNFS client may use an aggregation driver to support specialized file striping methods.

server cache. The presented value is the average over several
executions of the benchmark

Figures 6a and 6b display the maximum aggregate write through-
put with separate files and a single file. Direct-pNFS matches the
performance of PVFS2, reaching a maximum aggregate write
throughput of 119.2 MB/s and 110 MB/s for separate and single
file experiments.

pNFS-3tier write performance levels off at 83 MB/s with four
clients. pNFS-3tier splits the six available servers into data serv-
ers and storage nodes, which cuts the maximum network band-
width in half relative to the other pNFS and PVFS2 architectures.
In addition, using two disks in each storage node does not offer
twice the disk bandwidth of a single disk due to the constant level
of CPU, memory, and bus bandwidth.

Lacking direct data access, pNFS-2tier incurs a write delay and
performs a little worse than Direct-pNFS and PVFS2. Transfer-
ring data between data servers restricts the maximum bandwidth
between pNFS clients and data servers. This is not visible in
Figures 6a and 6b because network bandwidth exceeds disk
bandwidth, so Figure 6c repeats the multiple file write experi-
ments with 100 Mbps Ethernet. Using a slower network, pNFS-
2tier yields only half the performance of Direct-pNFS and
PVFS2, clearly illustrating the network bottleneck of pNFS-2tier.

Figures 6d and 6e display the aggregate write throughput with
separate files and a single file using an 8 KB block size. The
performance for all NFSv4-based architectures is unaffected from
the large block size experiments due to the NFSv4 client write
back cache, which combines write requests until they reach the
NFSv4 wsize (2 MB in our experiments). However, the perform-
ance of PVFS2, a parallel file system designed for large I/O, de-
creases dramatically with small block sizes, reaching a maximum
aggregate write throughput of 39.4 MB/s.

Figures 7a and 7b display the maximum aggregate read through-
put with separate files and a single file. With separate files, Di-
rect-pNFS matches the performance of PVFS2, reaching a maxi-
mum aggregate read throughput of 509 MB/s. With a single file,
PVFS2 has lower throughput than Direct-pNFS with only a few

clients, but outperforms Direct-pNFS with eight clients, reaching
a maximum aggregate read throughput of 530.7 MB/s. Direct-
pNFS places the NFSv4 and PVFS2 server modules on the same
node, placing higher demand on server resources. In addition,
PVFS2 uses a fixed number of buffers to transfer data between
the kernel and the user-level storage daemon, creating an addi-
tional bottleneck.

The division of the six available servers between data servers and
storage nodes in pNFS-3tier limits its maximum performance
again, achieving a maximum aggregate bandwidth of only 115
MB/s. NFSv4 aggregate performance is flat, limited to the band-
width of a single server.

The pNFS-2tier bandwidth bottleneck is readily visible in Figures
7a and 7b, where disk bandwidth is no longer a factor. Each data
server is not only responding to client read requests and but also
transferring data to other data servers so they can satisfy their
client read requests. Sending data to multiple targets limits each
data server’s maximum read bandwidth.

Figures 7c and 7d display the aggregate read throughput with
separate files and a single file using an 8 KB block size. The
performance for all NFSv4-based architectures is unaffected from
the large block size experiments due to the use of the Linux page-
cache and readahead algorithm. The performance of PVFS2
again decreases dramatically with small block sizes, reaching a
maximum aggregate read throughput of 51 MB/s.

6.2.1. Discussion
In the write experiments, Direct-pNFS and PVFS2 fully utilize
the available disk bandwidth. In the read experiments, data are
read directly from the server cache, so the disks are not a bottle-
neck. Instead, client and server CPU performance becomes the
limiting factor. The pNFS-2tier architecture offers comparable
performance with fewer clients, but is limited by network band-
width as we increase the number of clients. The pNFS-3tier ar-
chitecture demonstrates that using intermediary data servers to
access data is inefficient: those resources are better used as stor-
age nodes.

D i r e c t - p N F S C l i e n t

L a y o u t

I / O

N F S v 4 . 1 I / O
a n d

M e t a d a t a

K e r n e l

U s e r

p N F S
C l i e n t

A p p l i c a t i o n

M e t a d a t a S e r v e r

F i l e L a y o u t

C o n t r o l
F l o w

K e r n e l

U s e r

p N F S
S e r v e r

P V F S 2
M e t a d a t a

S e r v e r

P V F S 2
C l i e n t

F i l e L a y o u t /
A g g r e g a t i o n

D r i v e r

I /O
D r i v e r

K e r n e l

U s e r

p N F S
S e r v e r

P V F S 2
C l i e n t

D a t a S e r v e r s

I / O

L o o p b a c k

P V F S 2
S t o r a g e
S e r v e r

N F S v 4
Para l l e l I /O

P F S
M a n a g e m e n t P r o t o c o l

I / O

Figure 5. Direct-pNFS prototype architecture with PVFS2. The PVFS2 metadata server converts the PVFS2 layout into a
pNFS file-based layout, which is passed to the pNFS server and then to the Direct-pNFS file-based layout driver. The pNFS data
server uses the PVFS2 client as a conduit to retrieve data from the local PVFS2 storage daemon. Data servers do not communicate.

6.3. Scientific Application Benchmarks
This section uses two scientific benchmarks to analyze Direct-
pNFS in the high-performance arena.

6.3.1. ATLAS
ATLAS [28] is a particle physics experiment under construction
at CERN. The ATLAS detector can detect one billion events per
second with a combined data volume of 40 TB — or a PB every
25 seconds! — so ATLAS scientists are performing large-scale
simulations of the detector to develop real-time event filtering
algorithms to reduce the volume of data. After filtering, data
from fewer than one hundred events per second will be distributed
for offline analysis.

The ATLAS simulation runs in four stages; the Digitization
stage simulates detector data generation. With 500 events, Dig-
itization spreads approximately 650 MB randomly over a
single file. While 95 percent of the requests are less than 275 KB,
95 percent of the data are written in requests greater than or equal
to 275 KB. Each client writes to a separate file.

To evaluate Digitization write throughput we used IOZone
to replay the write trace data for 500 events. Each client writes to
a separate file.

Figure 8a shows that Direct-pNFS can manage efficiently the mix
of small and large write requests, achieving an aggregate write
throughput of 102.5 MB/s with eight clients. While small write
requests reduce the maximum write throughput achievable by
Direct-pNFS by approximately 14 percent, they severely reduce
the performance of PVFS2, which achieves only 41 percent of its
maximum aggregate write throughput.

6.3.2. NAS Parallel Benchmark 2.4 – BTIO
The NAS Parallel Benchmarks (NPB) are used to evaluate the
performance of parallel supercomputers. The BTIO benchmark is
based on a CFD code. We use the class A problem set, which
performs 200 time steps, checkpoints data every five time steps,
and generates a 400 MB checkpoint file. The version of the
benchmark used in this paper uses MPI-IO collective buffering,
which increases the I/O request size to one MB and greater. The
benchmark times also include the ingestion and verification of the
result file.

BTIO performance experiments are shown in Figure 8b. BTIO
running time is approximately the same for Direct-pNFS and
PVFS2. With nine clients, the running time of Direct-pNFS is
five percent longer due to the fixed number of buffers in PVFS2
(as discussed in Section 6.2).

6.4. Synthetic Workloads
This section uses two macro-benchmarks to analyze Direct-pNFS
in a more general setting.

6.4.1. OLTP
OLTP models a database workload as a series of transactions on a
single large file. Each transaction consists of a random 8 KB
read, modify, and write. Each client performs 20,000 transac-
tions, with data sent to stable storage after each transaction.

Figure 8c displays OLTP experimental results. Direct-pNFS
scales well, achieving 26 MB/s with eight clients. As expected,
PVFS2 performs poorly with small I/O requests, achieving an
aggregate I/O throughput of 6 MB/s.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier

 (a) separate (b) single (c) 100 Mbps

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

Number of Clients
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

M
B

/s
)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

 (d) separate - 8 KB (e) single - 8 KB

Figure 6. Aggregate write throughput. (a) and (b) With a separate or single file and a large block size, Direct-pNFS scales with
PVFS2 while pNFS-2tier suffers from a lack of direct file access. pNFS-3tier and NFSv4 are CPU limited. (c) With separate files
and 100 Mbps Ethernet, pNFS-2tier is bandwidth limited due to its need to transfer data between data servers. (d) and (e) With a
separate or single file and an 8 KB block size, all NFSv4 architectures outperform PVFS2.

6.4.2. Postmark
The Postmark benchmark simulates metadata and small I/O inten-
sive applications such as electronic mail, NetNews, and Web-
based services [29]. Postmark performs transactions on a large
number of small randomly sized files (between 1 KB and 500
KB). Each transaction first deletes, creates, or opens a file, then
reads or appends 512 bytes. Data are sent to stable storage before
the file is closed. Postmark performs 2,000 transactions on 100
files in 10 directories. All other parameters are left as default. To
ensure a more even distribution of requests among the storage
nodes, we reduce the stripe size, wsize, and rsize to 64 KB.

The Postmark experiments are shown in Figure 8d, with results
given in transactions per second. Direct-pNFS again leverages
the asynchronous, multi-threaded Linux NFSv4 implementation,
designed for small I/O intensive workloads like Postmark, to per-
form up to 36 times as many transactions per second as PVFS2.

6.4.3. Discussion
This set of experiments demonstrates that Direct-pNFS perform-
ance compares well to the exported parallel file system with the
large I/O scientific application benchmark BTIO. Direct-pNFS
performance for ATLAS, for which 95% of the I/O requests are
smaller than 275 KB, far surpasses native file system perform-
ance. The Postmark and OLTP benchmarks, where small I/O
requests also dominate, yield similar results.

A natural next step is to explore performance with routine tasks
such as a build/development environment. Following the SSH
build benchmark [30], we created a benchmark that uncom-

presses, configures, and builds OpenSSH [31]. Using the same
systems as above, we find that Direct-pNFS reduces compilation
time, a stage heavily dominated by small read and write requests,
but increases uncompress and configure time, stages dominated
by file creates and attribute updates.

Tasks like file creation—relatively simple for standalone file
systems—become complex on parallel file systems. Conse-
quently, some parallel file systems distribute metadata across
many nodes and have clients gather and reconstruct the informa-
tion, relieving the overloaded metadata server. NFSv4 relies on a
central metadata server, effectively recentralizing the decentral-
ized parallel file system metadata protocol. This paper does not
focus on improving metadata performance, but the sharp contrast
in metadata management technique between NFSv4 and parallel
file systems merits further study.

7. RELATED WORK
Unlike much recent work that focuses on improving the perform-
ance and scalability of a single file system, e.g., GPFS-WAN [32,
33], Google file system [34], Gfarm [35], and FARSITE [36], the
goal of Direct-pNFS is to enhance a commodity protocol to scale
I/O throughput to a diversity of parallel file systems.

Several file systems aggregate NFS servers into a single file sys-
tem image [37-39]. Direct-pNFS generalizes these architectures,
making them independent of the underlying parallel file system.

NFS-CD [40] uses NFSv4 delegations and cooperative caching to
enable client data sharing without server involvement. NFS-CD
and Direct-pNFS address different but related issues. NFS-CD

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

 (a) separate (b) single

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Number of Clients
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

M
B

/s
)

Direct-pNFS
PVFS2
pNFS-2tier
pNFS-3tier
NFSv4

 (c) separate – 8 KB (d) single – 8 KB

Figure 7. Aggregate read throughput. (a) With separate files and a large block size, Direct-pNFS outperforms PVFS2 for some
numbers of clients. pNFS-2tier and pNFS-3tier are bandwidth limited due to a lack of direct file access. NFSv4 is bandwidth and
CPU limited. (b) With a single file and a large block size, PVFS2 eventually outperforms Direct-pNFS due to a prototype software
limitation. pNFS-2tier and pNFS-3tier are bandwidth limited due to a lack of direct file access. NFSv4 is CPU limited. (c) and (d)
With a separate or single file and an 8 KB block size, all NFSv4 architectures outperform PVFS2.

can improve the effective runtime of an application, but clients
must access physical storage at some point. Cooperative caching
can be used together with the increased I/O throughput of Direct-
pNFS, combining the performance benefits of both approaches.

GridFTP [41] is used extensively in the Grid to enable high
throughput, operating system independent, and secure remote
access to parallel file systems. Successful and popular, GridFTP
nevertheless has some serious limitations: it copies data instead of
providing shared access to a single copy, complicating its consis-
tency model and decreasing storage capacity; lacks a global
namespace; and is difficult to integrate with the local file system.

The Storage Resource Broker [42] aggregates storage resources
into a single data catalogue, but does not support parallel I/O to
multiple storage endpoints and uses a customized interface.

A PVFS2 layout driver has existed since 2004 [8] and file-based
layout drivers have been demonstrated with GPFS, Lustre, and
PVFS2. Panasas object and EMC block drivers are also under
development. Earlier pNFS research improved overall write per-
formance by using direct, parallel I/O for large write requests and
a distributed file access protocol for small write requests [17].
This technique still benefits file systems whose storage nodes
cannot interpret the NFSv4 storage protocol. Direct-pNFS uses a
single storage protocol, allowing more efficient request gathering,
and eliminates the single server bottleneck.

8. CONCLUDING REMARKS
Universal, transparent, and scalable remote data access is a criti-
cal enabling feature of widely distributed collaborations. Existing
remote data access technologies such as NFS, pNFS, and
GridFTP fail to satisfy all three of these requirements.

Direct-pNFS, on the other hand, satisfies these requirements by
enhancing the portability and transparency of pNFS. Direct-
pNFS enables a stock NFSv4.1 client to support high-
performance remote data access to different parallel file systems.
Experiments demonstrate that Direct-pNFS matches the I/O
throughput of the specialized parallel file system that it exports.
Furthermore, Direct-pNFS “scales down” to outperform the paral-
lel file system client in diverse workloads.

ACKNOWLEDGEMENTS
This material is based upon work supported by the Department of
Energy under Award Numbers DE-FG02-06ER25766 and
B548853, Sandia National Labs under contract B523296, and by
grants from Network Appliance and IBM. We thank Lee Ward,

Gary Grider, James Nunez, Marc Eshel, Garth Goodson, Benny
Halvey, and the PVFS2 development team for their valuable in-
sights and system support.

DISCLAIMER
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Govern-
ment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

REFERENCES
[1] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Schlatter Ellis,

and M. Best, "File-Access Characteristics of Parallel Scien-
tific Workloads," IEEE Trans. on Parallel and Distributed
Systems, 7(10):1075-1089, 1996.

[2] P.E. Crandall, R.A. Aydt, A.A. Chien, and D.A. Reed, "In-
put/Output Characteristics of Scalable Parallel Applica-
tions," in Proc. of Supercomputing '95, San Diego, CA,
1995.

[3] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E
Long, and T.T. McLarty, "File System Workload Analysis
For Large Scale Scientific Computing Applications," in
Proc. of the 21st IEEE/12th NASA Goddard Conf. on Mass
Storage Systems and Technologies, College Park, MD, 2004.

[4] D. Strauss, "Linux Helps Bring Titanic to Life," Linux J., 46,
1998.

[5] B. Callaghan, B. Pawlowski, and P. Staubach, NFS Version
3 Protocol Specification. RFC 1813, 1995.

[6] Common Internet File System File Access Protocol (CIFS),
msdn.microsoft.com/library/en-us/cifs/
protocol/cifs.asp.

[7] S. Shepler, M. Eisler, and D. Noveck, NFSv4 Minor
Version 1. Internet Draft, 2006.

0

20

40

60

80

100

120

1 4 8
Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2

0

200

400

600

800

1000

1200

1400

1600

1 4 9
Number of Clients

Ti
m

e
(s

)

Direct-pNFS
PVFS2

0

5

10

15

20

25

30

1 4 8
Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct-pNFS
PVFS2

0

10

20

30

40

1 4 8
Number of Clients

Tr
an

sa
ct

io
ns

/S
ec

on
d

(tp
s)

Direct-pNFS
PVFS2

 (a) ATLAS (b) BTIO (c) OLTP (d) Postmark

Figure 8. (a) ATLAS. Direct-pNFS outperforms PVFS2 with a small and large write request workload. (b) BTIO. Direct-pNFS
and PVFS2 achieve comparable performance with a large read and write workload. Lower time values are better. (c) OLTP. Di-
rect-pNFS outperforms PVFS2 with an 8 KB read-modify-write write request workload. (d) Postmark. Direct-pNFS outperforms
PVFS2 in a small read and append workload.

[8] D. Hildebrand and P. Honeyman, "Exporting Storage Sys-
tems in a Scalable Manner with pNFS," in Proc. of the 22nd
IEEE/13th NASA Goddard Conf. on Mass Storage Systems
and Technologies, Monterey, CA, 2005.

[9] B. Halevy, B. Welch, and J. Zelenka, Object-based pNFS
Operations. Internet Draft, 2007.

[10] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and
J.K. Ousterhout, "Measurements of a Distributed File Sys-
tem," in Proc. of the 13th ACM Symp. on Operating Systems
Principles, Pacific Grove, CA, 1991.

[11] R.O. Weber, SCSI Object-Based Storage Device Commands
(OSD). Storage Networking Industry Association.
ANSI/INCITS 400-2004, www.t10.org, 2004.

[12] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.
Zeidner, Internet Small Computer Systems Interface (iSCSI).
RFC 3720, 2001.

[13] Panasas Inc., "Panasas ActiveScale File System,"
www.panasas.com.

[14] Cluster File Systems Inc., Lustre: A Scalable, High-
Performance File System. www.lustre.org, 2002.

[15] D.L. Black, S. Fridella, and J. Glasgow, pNFS
Block/Volume Layout. Internet Draft, 2007.

[16] D. Hildebrand and P. Honeyman, "Scaling NFSv4 with Par-
allel File Systems," in Proc. of Cluster Computing and Grid,
Cardiff, UK, 2005.

[17] D. Hildebrand, L. Ward, and P. Honeyman, "Large Files,
Small Writes, and pNFS," in Proc. of the 20th ACM Intl.
Conf. on Supercomputing, Cairns, Australia, 2006.

[18] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters," in Proc. of the USENIX
Conf. on File and Storage Technologies, San Francisco, CA,
2002.

[19] Red Hat Software Inc., "Red Hat Global File System,"
www.redhat.com/software/rha/gfs.

[20] S.R. Soltis, T.M. Ruwart, and M.T. O'Keefe, "The Global
File System," in Proc. of the 5th NASA Goddard Conf. on
Mass Storage Systems, College Park, MD, 1996.

[21] Polyserve Inc., "Matrix Server Architecture,"
www.polyserve.com.

[22] Parallel Virtual File System - Version 2, www.pvfs.org.
[23] IBRIX Fusion, www.ibrix.com.
[24] S.V. Anastasiadis, K. C. Sevcik, and M. Stumm, "Disk Strip-

ing Scalability in the Exedra Media Server," in Proc. of the
ACM/SPIE Multimedia Computing and Networking, San
Jose, CA, 2001.

[25] D.A. Patterson, G.A. Gibson, and R.H. Katz, "A Case for
Redundant Arrays of Inexpensive Disks (RAID)," in Proc. of
the ACM SIGMOD Conf. on Management of Data, Chicago,
IL, 1988.

[26] F. Isaila and W.F. Tichy, "Clusterfile: A Flexible Physical
Layout Parallel File System," in Proc. of the IEEE Intl. Conf.
on Cluster Computing, Newport Beach, CA, 2001.

[27] IOR Benchmark, www.llnl.gov/asci/purple/
benchmarks/limited/ior.

[28] ATLAS, atlasinfo.cern.ch.

[29] J. Katcher, "PostMark: A New File System Benchmark,"
Network Appliance, Technical Report TR3022, 1997.

[30] M. Seltzer, G. Ganger, M.K. McKusick, K. Smith, C. Soules,
and C. Stein., "Journaling versus Soft Updates: Asynchro-
nous Meta-data Protection in File Systems.," in Proc. of the
USENIX Annual Technical Conf., San Diego, CA, 2000.

[31] OpenSSH, www.openssh.org.
[32] P. Andrews, C. Jordan, and W. Pfeiffer, "Marching Towards

Nirvana: Configurations for Very High Performance Parallel
File Systems," in Proc. of the HiperIO Workshop, Barcelona,
Spain, 2006.

[33] P. Andrews, C. Jordan, and H. Lederer, "Design, Implemen-
tation, and Production Experiences of a Global Storage
Grid," in Proc. of the 23rd IEEE/14th NASA Goddard Conf.
on Mass Storage Systems and Technologies, College Park,
MD, 2006.

[34] S. Ghemawat, H. Gobioff, and S.T. Leung, "The Google File
System," in Proc. of the 19th ACM Symp. on Operating Sys-
tems Principles, Bolton Landing, NY, 2003.

[35] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekigu-
chi, "Grid Datafarm Architecture for Petascale Data Inten-
sive Computing," in Proc. of the 2nd IEEE/ACM Intl. Symp.
on Cluster Computing and the Grid, Berlin, Germany, 2002.

[36] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer, and R.P.
Wattenhofer, "FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment," in Proc.
of the 5th Symp. on Operating Systems Design and Imple-
mentation, Boston, MA, 2002.

[37] G.H. Kim, R.G. Minnich, and L. McVoy, "Bigfoot-NFS: A
Parallel File-Striping NFS Server (Extended Abstract),"
1994, www.bitmover.com/lm.

[38] F. Garcia-Carballeira, A. Calderon, J. Carretero, J. Fernan-
dez, and J.M. Perez, "The Design of the Expand File Sys-
tem," Intl. J. of High Performance Computing Applications,
17(1):21-37, 2003.

[39] P. Lombard and Y. Denneulin, "nfsp: A Distributed NFS
Server for Clusters of Workstations," in Proc. of the 16th
Intl. Parallel and Distributed Processing Symp., Fort
Lauderdale, FL, 2002.

[40] A. Batsakis and R. Burns, "Cluster Delegation: High-
Performance Fault-Tolerant Data Sharing in NFS," in Proc.
of the 14th IEEE Intl. Symp. on High Performance Distrib-
uted Computing, 2005.

[41] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal, and
S. Tuecke., "Data Management and Transfer in High-
Performance Computational Grid Environments," Parallel
Computing, 28(5):749-771, 2002.

[42] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC
Storage Resource Broker," in Proc. of the Conf. of the Cen-
tre for Advanced Studies on Collaborative Research, To-
ronto, Canada, 1998.

