

CITI Technical Report 06-04

LARGE FILES, SMALL WRITES, AND pNFS

Dean Hildebrand
dhildebz@umich.edu

Lee Ward
lee@sandia.gov

Peter Honeyman
honey@citi.umich.edu

ABSTRACT

Workload characterization studies highlight the prevalence of small and sequential data requests in
scientific applications. Parallel file systems excel at large data transfers but sometimes at the
expense of small I/O performance. pNFS is an NFSv4.1 high-performance enhancement that
provides direct storage access to parallel file systems while preserving NFSv4 operating system and
hardware platform independence. This paper demonstrates that distributed file systems can
increase write throughput to parallel data stores—regardless of file size—by overcoming parallel
file system inefficiencies. We also show how pNFS can improve the overall write performance of
parallel file systems by using direct, parallel I/O for large write requests and a distributed file
system for small write requests. We describe our pNFS prototype and present experiments
demonstrating the performance improvements.

May 10, 2006

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

LARGE FILES, SMALL WRITES, AND pNFS
Dean Hildebrand

Center for Information
Technology Integration
University of Michigan

dhildebz@eecs.umich.edu

Lee Ward
Scalable Computing Systems

Department
Sandia National Laboratories

 lee@sandia.gov

 Peter Honeyman
Center for Information
Technology Integration
University of Michigan

honey@citi.umich.edu

ABSTRACT
Workload characterization studies highlight the prevalence of
small and sequential data requests in scientific applications.
Parallel file systems excel at large data transfers but sometimes at
the expense of small I/O performance. pNFS is an NFSv4.1 high-
performance enhancement that provides direct storage access to
parallel file systems while preserving NFSv4 operating system
and hardware platform independence. This paper demonstrates
that distributed file systems can increase write throughput to
parallel data stores—regardless of file size—by overcoming
parallel file system inefficiencies. We also show how pNFS can
improve the overall write performance of parallel file systems by
using direct, parallel I/O for large write requests and a distributed
file system for small write requests. We describe our pNFS
prototype and present experiments demonstrating the performance
improvements.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance – measurements.

General Terms
Algorithms, Performance, Design, Experimentation,
Standardization

Keywords
Parallel I/O, Parallel File System, NFSv4, pNFS, Distributed File
System, Small Write Performance Improvement

1. INTRODUCTION
In recent years, parallel file systems have emerged to meet
enterprise and grand challenge-scale data and performance
requirements [1-4]. These systems are shattering bandwidth
records through large bulk data transfers between thousands of
nodes and disks, but overlook the performance of small I/O
requests, both to small and large files.

Parallel file systems improve the aggregate throughput of bulk
data transfers by scaling disks, disk controllers, network, and
servers—every aspect of the system architecture. As system size
increases, the cost of locating, managing, and protecting data
increases the per-request overhead. This overhead is small
relative to the overall cost of large data transfers, but considerable

for smaller data requests. Many parallel file systems ignore this
high penalty for small I/O, focusing entirely on large data
transfers.

Unfortunately, not all data comes in big packages. Numerous
workload characterization studies have highlighted the prevalence
of small and sequential data requests in modern scientific
applications [5-11]. This trend will likely continue since many
HPC applications take years to develop, have a productive
lifespan of ten years or more, and are not easily re-architected for
the latest file access paradigm [12]. Furthermore, many current
data access libraries such as HDF5 and netCDF rely heavily on
small data accesses to store individual data elements in a common
(large) file [13, 14].

Distributed file systems are optimized for small data accesses [15,
16]; not surprisingly, studies demonstrate that small I/O is their
middleware niche [17]. However, their “single server” design,
which binds one network endpoint to a given collection of files,
limits opportunities to scale with network, CPU, memory, and
disk I/O resources. NFSv4 [18] improves functionality by
providing integrated security and locking frameworks, and
migration and replication features, but retains the single server
bottleneck.

pNFS [19, 20] is an extension of NFSv4 that provides file access
scalability plus operating system, hardware platform, and storage
system independence. pNFS overcomes the performance
bottlenecks of NFS with parallel file systems by enabling the
NFSv4 client to access storage directly. Our earlier work [21]
demonstrates that pNFS matches the performance of the native
parallel file system client for large data transfers.

This paper investigates the performance of parallel file systems
with small writes. We demonstrate that distributed file systems
can increase write throughput to parallel data stores—regardless
of file size—by overcoming parallel file system small write
inefficiencies. We then use pNFS to improve the overall write
performance of parallel file systems by using direct, parallel I/O
for large write requests and a distributed file system for small
write requests. The pNFS heterogeneous metadata protocol
allows any parallel file system to realize these write performance
improvements.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 gives an overview pNFS and
discusses the prototype used in this paper. Section 4 details the
issues with writing small amounts of data in scientific
applications. Section 5 describes how pNFS can improve these
applications. Section 6 reports the results of our experiments with
benchmarks and a real scientific application. Section 7 discusses
future work. Section 8 summarizes and concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS06, June 28-30, Cairns, Queensland, Australia.
Copyright (c) 2006 ACM 1-59593-282-8/06/0006...$5.00

Server

Layout

I/O

Client

Layout
Driver

pNFS
Parallel I/O

NFSv4 I/O and Metadata
Storage
Nodes

pNFS
Client I/O

Driver

Storage
System

Layout

Control
Flow

pNFS
Server

Figure 1. pNFS architecture

pNFS extends NFSv4 by adding a layout driver, an I/O
driver, and a file layout retrieval interface. The pNFS server
obtains an opaque file layout map from the storage system
and transfers it to the pNFS client and subsequently to its
layout driver for direct and parallel data access.

Client

Layout

I/O

pNFS
Parallel I/O

NFSv4 I/O and Metadata

Kernel

User

PVFS2
Storage
Nodes

pNFS
Client

Application
PVFS2
Layout

and
I/O

Driver

Server

Layout

Control
Flow

Kernel

User

pNFS
Server

PVFS2
Client

Kernel

User

PVFS2
Metadata

Server

Figure 2. pNFS prototype architecture

The pNFS client uses the PVFS2 layout driver for all I/O.
The pNFS server obtains the file layout from the PVFS2
metadata server via the PVFS2 client, transfers it back to the
pNFS client, then to the PVFS2 layout driver for direct and
parallel data access.

2. RELATED WORK
Log-structured file systems [22] increase the size of writes by
appending small I/O requests to a log and then flushing the log to
disk. Zebra [23] extends this to distributed environments. Side
effects include large file layouts and erratic block sizes.

The Vesta parallel file system [24] improves I/O performance by
optimizing data layout on storage through application provided
workload characteristic information. Providing this information
can be difficult for applications that lack regular I/O patterns or
whose I/O access patterns change over time.

Both EMC’s Celerra HighRoad file system [25] and the RAID-II
network file server [26] transfer small files over the LAN to
preserve SAN bandwidth for large file requests, but differentiating
small and large files does not help with small requests to large
files. This re-direction benefits only large requests, and may
reduce the performance of small requests.

GPFS [3] forwards data between I/O nodes for requests smaller
than the block size. This reduces the number of messages with
the lock manager and possibly reduces the number of read-
modify-write sequences.

Both the Lustre [1] and the Panasas ActiveScale [4] file systems
use a write-behind cache to perform buffered writes. In addition,
Lustre allows clients to place small files on a single storage node
to reduce access overhead.

All of these parallel file systems focus primarily on large data
transfers, with any small data transfer enhancements an
afterthought. pNFS provides an operating system and platform
independent architecture with a rich set of existing features that
allows parallel file systems to focus on their core strengths.

The MPI-2 standard [27] introduces MPI-IO, a parallel I/O
interface that allows applications and their file format libraries,
e.g., HDF5, parallel NetCDF, to provide the storage layer with a
more precise and global view of application I/O. Implementations
of MPI-IO such as ROMIO [28] use application hints and file
access patterns to improve single and parallel I/O request
performance.

We see our work as beneficial and complementary to MPI-IO and
its implementations. MPI-IO benefits applications that use its API
and have regular I/O access patterns, e.g., strided I/O. In addition,
MPI-IO small write performance continues to be limited by the
deficiencies of the underlying parallel file system. Our pNFS
enhancements are beneficial for existing and unmodified
applications. They are also beneficial at the file system layer of
MPI-IO implementations, to improve the performance of the
underlying parallel file system.

3. SCALABLE I/O WITH PNFS
This section summarizes the pNFS architecture, described in more
detail in an earlier paper [21].

3.1. pNFS Overview
pNFS is a heterogeneous metadata protocol. The NFS client and
server perform control and file management operations and
delegate the responsibility for I/O to a storage-specific driver. By
separating control and data flows, pNFS allows data to transfer in
parallel from many clients to many storage endpoints.
Distributing I/O across the bisectional bandwidth of the storage
network between clients and storage devices removes the single
server bottleneck.

Figure 1 depicts the architecture of pNFS, which adds a layout
driver, an I/O driver, and a file layout retrieval interface to the
standard NFSv4 architecture.

The layout driver understands the file layout of the storage
system. A layout consists of all information required to access
any byte range of a file. The layout driver uses the layout to
translate read and write requests from the pNFS client into I/O
requests understood by the storage devices. The I/O driver
performs I/O—e.g., iSCSI [29], Portals [30], SunRPC [31]—to
the storage nodes.

A benefit of pNFS is its ability to match the performance of the
underlying storage system’s native client while continuing to
support all standard NFSv4 features. This support is ensured by
introducing pNFS extensions into a “minor version,” an extension
mechanism that is part of the NFSv4 standard. In addition, pNFS

Figure 3. pNFS data paths

pNFS utilizes NFSv4 I/O along the small write path when
the write request size is less than the write threshold.

Client pNFS
Parallel I/O

NFSv4 Small Writes

Kernel

User

Application

PVFS2
Storage
Nodes

Write Threshold

I/O

LayoutpNFS
Client

PVFS2
Layout

and
I/O

Driver

Kernel

User

PVFS2
Metadata

Server

Server

Kernel

User

pNFS
Server

Layout

Small Writes PVFS2
Client

Figure 4. Updated pNFS prototype architecture with
write threshold
pNFS retrieves the write threshold from PVFS2 layout
driver to determine the correct data path for a write request.

does not impose restrictions that might limit the underlying file
system’s ability to provide quality-enhancing features such as
usage statistics or storage management interfaces.

3.2. pNFS Prototype
In an earlier paper [21], we describe a pNFS prototype for Linux,
depicted in Figure 2, that implements the major features of the
pNFS protocol and introduces a general framework for pluggable
layout drivers. The I/O throughput of that prototype equals that of
its exported file system (PVFS2) and is dramatically better than
standard NFSv4.

PVFS2 is a user-level, open-source, scalable, asymmetric parallel
file system designed as a research tool and for production
environments. Although PVFS2 runs in user-space, an operating
system specific kernel module allows integration into a user’s
environment and access by other file systems such as NFS. This
lets users mount and access PVFS2 through a POSIX interface.
The PVFS2 client uses memory mapping to avoid copying pages
into the kernel.

PVFS2 is designed for the large data needs of scientific
applications. These applications access very large files and are
generally “write once, read never”—re-reading output is rare. As
such, PVFS2 uses large transfer buffers, supports limited request
parallelization, incurs a per-request overhead, and does not use a
client data or write back cache.

4. SMALL I/O REQUESTS
Several scientific workload characterization studies demonstrate
the need to improve performance of small I/O requests to small
and large files.

The CHARISMA study [5-7] finds that file sizes in scientific
workloads are much larger than those typically found in UNIX
workstation environments and that most applications access only a
few files. Approximately 90% of file accesses are small—less
than 4 KB—and represent a considerable portion of application
execution time, even though approximately 90% of the data is
transferred in large accesses. In addition, most files are read-only
or write-only and are accessed sequentially, but some read-write
files are accessed randomly.

The Scalable I/O study [8-10] had similar findings, but remarked
that most requests are small writes into GB sized files, consuming
98% of the execution time of one application. Furthermore, it is
common for a single node to handle the majority of reads and
writes, gathering the data from, or broadcasting the data to the
other nodes as necessary. This indicates that single node
performance still requires attention from parallel file systems.
The study also notes that a lack of portability prevents
applications from using enhanced parallel file system interfaces.

A more recent study in 2004 of two physics applications [11]
amplifies the earlier findings.

NetCDF (Network Common Data Form) provides a portable and
efficient mechanism for sharing data between scientists and
applications [13]. NetCDF defines a file format and an API for
the storage and retrieval of a file’s contents. It is the predominant
file format standard within many scientific communities [32].
NetCDF stores data in a single array-oriented file, which contains
dimensions, variables, and attributes. Applications individually
define and write thousands of data elements, creating many
sequential and small write requests.

HDF5 is another popular portable file format and programming
interface for storing scientific data in a single file. It provides a
richer data model, with emphasis on efficiency of access, parallel
I/O, and support for high-performance computing, but continues
to define and store each data element separately, creating many
small write requests.

This paper demonstrates how pNFS can improve small write
performance with parallel file systems for small and large files,
regardless of whether an application or file format library
generates the write requests.

5. SMALL WRITES AND pNFS
pNFS improves file access scalability by providing the NFSv4
client with support for direct storage access. We now turn to an
investigation of the relative costs of the direct I/O path and the
NFSv4 path.

5.1. File System I/O Features
A single large I/O request can saturate a client’s network
endpoint. Engineering a parallel file system for large requests
entails the use of large transfer buffers, limited number of
asynchronous requests, many storage nodes, and a write-through
cache (if a cache even exists).

NFS implementations have several features that allow them to
compete with the direct write path:

• Asynchronous client requests. Many parallel file systems
incur a per-request overhead that is non-negligible for small
requests. NFSv4 clients can hand small requests to the
NFSv4 server, allowing the server to absorb this overhead
without delaying the client application or consuming client
CPU cycles. In addition, asynchrony allows request
pipelining on the NFSv4 server, reducing aggregate latency
to the storage nodes.

• One server per request. Data written to a byte-range that
spans multiple storage nodes (e.g., multiple stripes) requires
two separate requests, further increasing the per-request
overhead. The NFSv4 single server design can reduce client
request overhead for small requests in these instances.

• SunRPC. NFSv4 uses SunRPC, a low-overhead and low-
latency network protocol, well suited for small data transfers.

• Client writeback cache. NFSv4 increases the efficiency of
small write requests by gathering sequential writes requests
into a single request.

• Server write gathering. The NFSv4 server combines
sequential write requests into a single request to the exported
parallel file system. This can be useful, e.g., for applications
performing strided access into a single file.

5.2. Small Write Performance Example:
Postmark Benchmark

To observe a parallel file system’s performance loss in a real-
world environment, we ran the Postmark benchmark with our
pNFS prototype, standard NFSv4, and Ext3. Postmark simulates
metadata and small I/O intensive applications such as electronic
mail, netnews, and web based services [33]. Postmark creates and
performs transactions on a large number of small randomly sized
files (between 1 KB and 500 KB). Each transaction first deletes,
creates, or opens a file, and then appends 1 KB. Data is sent to
stable storage before the file is closed. Postmark performs 2,000
transactions on 100 files. The experiments use eight 1.7 GHz dual
P4 processors with gigabit Ethernet. PVFS2 has six storage nodes
and one metadata server.

Table 1 shows the Postmark results for Ext3, NFSv4, and pNFS.
Ext3 outperforms remote clients, achieving a write throughput of
5.02 MB/s. NFSv4 achieves a write throughput of 4.03 MB/s.
pNFS exporting the PVFS2 parallel file system performs poorly,
achieving a write throughput of only 0.65 MB/s. This is due to
the inability of PVFS2 to parallelize requests effectively and its
use of a write-through cache. Using the features discussed in
Section 5.1, NFSv4 raises the write throughput to PVFS2 up to
2.4 MB/s. This demonstrates that the parallel, direct I/O path is
not always the best choice and the indirect path is not always the
worst choice.

Table 1: Postmark write throughput with 1 KB block
size. NFSv4 outperforms direct, parallel I/O for small
writes.

File System Write Throughput (MB/s)
Ext3 5.02

NFSv4/Ext3 4.03
pNFS/PVFS2 0.65
NFSv4/PVFS2 2.44

Figure 5. Determining the write threshold value

Write execution time increases with larger request sizes.
Application write requests are either small or large, with few
requests in the middle. The write threshold can be any value
in this middle region.

5.3. pNFS Write Threshold
To use the indirect I/O path for small writes, we modified our
pNFS client prototype to allow it to use the NFSv4 I/O protocol as
well as the I/O protocol of the underlying file system. To switch
between them, we added a write threshold to the layout driver.
Write requests smaller than the threshold follow the slower
NFSv4 data path. Write requests larger than the threshold follow
the faster layout driver data path. Figures 3 and 4 illustrate the
implementation of the write threshold in both the general pNFS
architecture and in our prototype.

pNFS features a heterogeneous metadata protocol that enables it
to benefit from the strengths of disparate I/O protocols. A write
threshold improves overall write performance for pNFS by hitting
the sweet spot of both the NFSv4 and underlying file system I/O
protocols.

Just as any improvement to NFSv4 improves access to the file
system it exports, our improvements to pNFS are portable and
benefit all parallel file systems equally. We therefore see our
improvements as allowing pNFS (and its exported parallel file
systems) to concentrate on large data requirements, while native
NFSv4 efficiently processes small I/O.

5.4. Setting the Write Threshold
The big advantage of a write threshold is that applications that
mix small and large write requests get the “best” I/O path
automatically.

Figure 6. Single client consecutive write throughput

Write throughput of a single client issuing consecutive small
write requests. NFSv4 exporting PVFS2 outperforms pNFS
until a write size of 64 KB. pNFS with a 32 KB write
threshold achieves the best overall performance. Data
points are a power of two; lines are for readability.

Figure 7. Multiple client consecutive write

throughput
Aggregate write throughput of a ten clients issuing
consecutive small write requests to a single file. NFSv4
exporting PVFS2 outperforms pNFS until a write size of 8
KB. pNFS with a 4 KB write threshold achieves the best
overall performance.

Figure 8. Single client random write throughput

Write throughput of a single client issuing random small
write requests. NFSv4 exporting PVFS2 outperforms pNFS
until a write size of 128 KB. pNFS with a 64 KB write
threshold achieves the best overall performance.

The optimal write threshold value depends on several factors,
including server capacity, network performance and capability,
and the utilized distributed and parallel file systems. One way to
choose a good threshold value is to compare execution times for
distributed and parallel file systems with various write sizes and
see where the curves cross. However, the optimal threshold is
sensitive to system load.

Figure 5 displays write request execution time with increasing
request size for a parallel file system and for an idle and busy
distributed file system. When the distributed file system is lightly
loaded, the transfer size at which the parallel file system
outperforms the distributed file system, labeled B, is the optimal
write threshold. When the distributed file system is heavily
loaded, each request takes longer to complete, so the slope
increases and intersects the parallel file system at the smaller
threshold size, labeled A. (If the distributed file system is

thoroughly overloaded, the threshold value tends to zero, i.e.,
never use a distributed file system so heavily loaded.)

The workload characterization studies mentioned in Section 4
state that scientific applications usually have a large gap between
small and large write request sizes, with very few requests in the
middle. Our experiments reveal that small requests are smaller
than the “busy” write threshold value and the large requests are
larger than the “idle” write threshold values, i.e., applications will
reap large gains for any write threshold value between A and B.
For example, the ATLAS digitization application (Section 6.3)
achieves the same performance with any write threshold between
32 KB and 274 KB. In addition, 87 percent of the write requests
are smaller than 4 KB, which suggests that we could make the
threshold even smaller without hurting performance.

The write threshold can be set at any time, including compile
time, when a module loads, and run time. For example, system
administrators can determine the write threshold as part of a file
system and network installation and optimization. A natural value
for the write threshold is the write gather size of the distributed
file system.

6. EVALUATION
In this section, we evaluate the performance of our pNFS
prototype with the write threshold heuristic.

6.1. Experimental Setup
Our IOR and random write IOZone experiments use a pair of
sixteen node clusters connected with Myrinet. One cluster
consists of 1.1 GHz dual-processor PIII Xeon nodes while the
other consists of 1 GHz dual-processor PIII Xeon nodes. Each
node has 1 GB of memory. The PVFS2 1.1.0 file system has
eight storage nodes and one metadata server. Each storage node
has an Ultra160 SCSI disk controller and one Seagate Cheetah 18
GB, 10,033 RPM drive, which has an average seek time of 5.2
ms. The NFSv4 server, PVFS2 client its exports, and the PVFS2
metadata server are installed on a single node. All nodes run
Linux 2.6.12-rc4.

 a. Percentage of total number of requests b. Percentage of total amount of data output

Figure 9. ATLAS digitization write request size distribution with 500 events

Our ATLAS experiments use an eight node cluster of 1.7 GHz
dual P4 processors, 2 GB of memory, a Seagate 80 GB 7200 RPM
hard drive with an Ultra ATA/100 interface and a 2 MB cache,
and a 3Com 3C996B-T gigabit card. The PVFS2 1.1.0 file system
has six storage nodes and one metadata server. The NFSv4
server, PVFS2 client it exports, and the PVFS2 metadata server
are installed on a single node. All nodes run Linux 2.6.12-rc4.

6.2. IOR and IOZone Benchmarks
6.2.1. Experimental Design
The first experiment consists of a single client issuing one
thousand sequential write requests to a file, using the IOR
benchmark [34]. A test completes when data is committed to
disk. We repeat this experiment with ten clients writing to
disjoint portions of a single file. The second experiment consists
of a single client randomly writing a 32 MB file using IOZone
[35].

For each experiment, we first compare the aggregate write
throughput of pNFS and NFSv4 with a range of individual request
sizes. We then set the write threshold to be the request size at
which pNFS and NFSv4 have the same performance, and re-
execute the benchmark.

6.2.2. Experimental Evaluation
Our first experiment, shown in Figure 6, examines single client
performance. NFSv4 writes to PVFS2 or Ext3 perform
comparably because the NFSv4 write size of 32 KB is less than
the PVFS2 stripe size of 64 KB, so writes are restricted to a single
disk.

The performance of a single pNFS client writing through the
NFSv4 server to PVFS2 outperforms writing directly to PVFS2
until the request size reaches 64 KB. For 16-byte writes, NFSv4
has sixty-seven times the throughput, with the ratio decreasing to
one at 64 KB. The maximum throughput difference of 10.2 MB/s
occurs at 4 KB. Write performance through the NFSv4 server
reaches its peak at 32 KB, the NFSv4 client request size. At 64
KB, direct storage access begins to outperform indirect access.
pNFS with a write threshold of 32 KB offers the performance

benefits of both I/O protocols by using NFSv4 I/O until 32 KB,
then switching to direct storage access with the PVFS2 I/O
protocol.

Figure 7 shows the results of ten nodes writing to disjoint
segments of the same file. Ext3 performance is limited by random
requests from the NFSv4 server daemons. Using NFSv4 I/O to
access PVFS2 does not incur as many random accesses since the
writes are spread over eight disks.

PVFS2 exhibits linear scaling as it spreads its requests across all
eight storage nodes. The aggregate performance of NFSv4 is the
same as with a single client, with the write performance crossover
point between pNFS and NFSv4 occurring at 4 KB. With 16-byte
writes, NFSv4 has twenty times the bandwidth, with the ratio
decreasing to one at just below 8 KB. The maximum bandwidth
difference of 9 MB/s occurs at 1 KB. At 8 KB, direct storage
access begins to outperform indirect access. pNFS with a write
threshold of 4 KB offers the performance benefits of both I/O
protocols.

Figure 8 shows the performance of randomly writing a 32 MB file
with a range of request sizes. NFSv4 outperforms pNFS until the
individual write size reaches 128 KB, with a maximum difference
of 13 MB/s occurring at 16 KB. pNFS using a write threshold of
64 KB again experiences the performance benefits of both I/O
protocols.

6.3. ATLAS Applications
Not every application generates the small write behavior
discussed in Section 4. For example, large writes dominate the
FLASH I/O benchmark workload [36], with 99.7 percent of
requests greater than 163 KB (with default input parameters).
However, in addition to the workload characterization studies,
there is increasing anecdotal evidence to suggest that small write
behavior is quite common.

One application that exhibits small write behavior is the ATLAS
simulator. ATLAS [37] is a particle physics experiment that
seeks new discoveries in head on collisions of high-energy
protons using the Large Hadron Collider accelerator [38].
Beginning in 2007, ATLAS will generate approximately a

Figure 10. ATLAS digitization write throughput for 50
and 500 events
pNFS with a 32 KB write threshold achieves the best overall
performance by directing small requests through the NFSv4
server and the 275 KB and 1MB requests to the PVFS2
storage nodes.

petabyte of data each year. This data will be distributed for
analysis to a multi-tiered collection of decentralized sites.

Currently, ATLAS is performing large-scale simulation of the
events that will occur within its detector. These simulation efforts
influence detector design and the development of real-time event
filtering algorithms for reducing the amount of data. The ATLAS
detector can detect one billion events with a combined data
volume of forty terabytes each second. After filtering, data from
fewer than one hundred events per second are stored for offline
analysis.

The ATLAS simulation event data model consists of four stages.
The Event Generation stage produces pseudo-random
events drawn from a statistical distribution of previous
experiments. The Simulation stage then simulates the passage
of particles (events) through the detectors. The Digitization
stage combines hit information with estimates of internal noise,
subjecting the hits to a parameterization of the known response of
the detectors to produce simulated digital output (digits). The
Reconstruction stage performs pattern recognition and track
reconstruction algorithms on the digits, converting raw digital
data into meaningful physics quantities.

6.3.1. Experimental Design
This paper focuses on the Digitization stage, which is the
only stage that generates a large amount of data. With 500 events,
Digitization produces approximately 650 MB of output data
to a single file. Data is written randomly with write request size
distributions shown in Figure 9. Figure 9a shows that only 4
percent of write request sizes are 275 KB or greater, with the rest
below 32 KB. Figure 9b shows that 96 percent of write requests
only write 5 percent of the data, with 95 percent of data written in
requests greater than 275 KB. This distribution of write request
size and total amount of data output closely matches the workload
characterization studies discussed in Section 4. Analysis of the
Digitization write request distribution with varying numbers
of events indicates that the distribution in Figure 9 is a
representative sample.

An analysis of the Digitization trace data found a large
number of fsync system calls. For example, executing
Digitization with 50 events produced more than 900
synchronous fsync calls. Synchronously committing data to
storage reduces request parallelism and the effectiveness of write
gathering.

ATLAS developers inform us that the overwhelming use of fsync
is an implementation issue rather than an application necessity.
Therefore, to evaluate Digitization write throughput we
used IOZone to replay the write trace data without the fsync calls
for 50 and 500 events.

6.3.2. Experimental Evaluation
To evaluate pNFS with the ATLAS simulator, we analyzed the
Digitization write throughput with several write threshold
values.

We initially used the IOZone benchmark to determine the
maximum PVFS2 write throughput. The maximum write
throughput for a single-threaded application and an entire client is
18 MB/s and 54 MB/s respectively. The single threaded
application maximum performance value sets the upper limit for
ATLAS write throughput. Increasing the number of threads
simultaneously writing to storage increases the maximum write
throughput three-fold. Since ATLAS Digitization is a
single threaded application generating output for serialized events,
it cannot directly take advantage of this extra performance.

As shown in Figure 10, pNFS achieves a write throughput of 11.3
MB/s and 11.9 MB/s with 50 and 500 events respectively. The
small write requests reduce the application’s optimal write
throughput by approximately 6 MB/s.

With a write threshold of 1 KB, 49 percent of requests are re-
directed to the NFSv4 server, increasing performance by 23
percent. With a write threshold of 32 KB, 96 percent of write
requests use the NFSv4 I/O path. With 50 events, the increase in
write performance is 57 percent, for a write throughput of 17.8
MB/s. With 500 events, the increase in write performance is 100
percent, for a write throughput of 23.8 MB/s.

It is interesting to note that 32 KB write threshold performance
exceeds the single-threaded application maximum write
throughput. Since the NFSv4 server is multi-threaded, it can
process multiple simultaneous write requests and outperform a
single-threaded application. This is yet another benefit of the
increased parallelism available in distributed file systems.

When pNFS funnels all Digitization output through the
NFSv4 server, the performance drops dramatically, but is still
slightly better than the performance of pNFS with direct I/O. In
this experiment, the improved write performance of the smaller
requests overshadows the reduced performance of sending large
write requests through the NFSv4 server.

The 50 and 500 event experiments have slightly different write
request size and offset distributions. In addition, the 500 event
simulation has ten times the number of write requests. We believe
the difference between the pNFS write threshold performance
improvements in the 50 and 500 event experiments is due to a
difference in behavior of the NFSv4 writeback cache with these
different write workloads.

6.4. Discussion
Our experiments show that writing to the direct data path is not
always the best choice. Write request size plays an important role
in determining the preferred data path.

The Linux NFSv4 client gathers small writes into 32 KB requests.
With very small requests, the overhead of gathering requests
diminishes its potential, but it is still beneficial. As the size of
each write request grows, the benefit is considerable.

Performing an increased number of parallel asynchronous write
requests also improves performance. This is seen in both Figures
6 and 8, as the performance of writing 32 KB requests exceeds
that of writing directly to storage.

The Linux NFSv4 server does not perform write gathering. Our
experiments clearly show the benefit of increasing the write
request size. The ability for the NFSv4 server to combine small
requests from multiple clients into a single large request should
also win big.

7. FUTURE WORK
We are investigating a number of potential improvements:

• Implement strided read and write interfaces in NFSv4.
• Implement Linux NFSv4 server request gathering.
• Implement symmetric pNFS servers.

8. CONCLUSIONS
Diverse file access patterns and computing environments in the
high performance community make pNFS an indispensable tool
for scalable data access. This paper demonstrates that pNFS can
increase write throughput to parallel data stores—regardless of
file size—by overcoming parallel file system small write
inefficiencies. pNFS improves the overall write performance of
parallel file systems by using direct, parallel I/O for large write
requests and a distributed file system for small write requests.
Our evaluation results using a real scientific application and
several benchmarks demonstrate the benefits of this design. The
pNFS heterogeneous metadata protocol allows any parallel file
system to realize these write performance improvements.

9. ACKNOWLEDGEMENTS
This work is partially supported by Sandia National Labs. Sandia
is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under contract
B523296. We thank Jim Schutt, Ruth Klundt, Gary Grider, and
James Nunez for their valuable insights and system support.

10. REFERENCES
[1] Cluster File Systems Inc., "Lustre: A Scalable, High-

Performance File System," 2002.
[2] PVFS2 Development Team, "Parallel Virtual File System,

Version 2," www.pvfs.org/pvfs2.
[3] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk File

System for Large Computing Clusters," in Proceedings of the
USENIX Conference on File and Storage Technologies,
2002.

[4] Panasas Inc., "Panasas ActiveScale File System Datasheet,"
www.panasas.com, 2003.

[5] D. Kotz and N. Nieuwejaar, "Dynamic File-Access
Characteristics of a Production Parallel Scientific Workload,"
in Proceedings of Supercomputing '94, 1994.

[6] A. Purakayastha, C. Schlatter Ellis, D. Kotz, N. Nieuwejaar,
and M. Best, "Characterizing Parallel File-Access Patterns on
a Large-Scale Multiprocessor," in Proceedings of the Ninth
International Parallel Processing Symposium, 1995.

[7] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Schlatter Ellis,
and M. Best, "File-Access Characteristics of Parallel
Scientific Workloads," IEEE Transactions on Parallel and
Distributed Systems, (7)10, pp. 1075-1089, 1996.

[8] E. Smirni and D.A. Reed, "Workload Characterization of
Input/Output Intensive Parallel Applications," in
Proceedings of the Conference on Modeling Techniques and
Tools for Computer Performance Evaluation, 1997.

[9] E. Smirni, R.A. Aydt, A.A. Chien, and D.A. Reed, "I/O
Requirements of Scientific Applications: An Evolutionary
View," in Proceedings of the Fifth IEEE Conference on High
Performance Distributed Computing, 1996.

[10] P.E. Crandall, R.A. Aydt, A.A. Chien, and D.A. Reed,
"Input/Output Characteristics of Scalable Parallel
Applications," in Proceedings of Supercomputing '95, 1995.

[11] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, and
D.D.E Long, "File System Workload Analysis For Large
Scale Scientific Computing Applications," in Proceedings of
the 21st IEEE/12th NASA Goddard Conference on Mass
Storage Systems and Technologies, 2004.

[12] ASCI Purple RFP,
www.llnl.gov/asci/platforms/purple/rfp.

[13] R. Rew and G. Davis, "The Unidata netCDF: Software for
Scientific Data Access," in Proceedings of the Sixth
International Conference on Interactive Information and
Processing Systems for Meteorology, Oceanography and
Hydrology, Anaheim, CA, 1990.

[14] NCSA, "HDF5 ", hdf.ncsa.uiuc.edu/HDF5.
[15] Sun Microsystems Inc., "NFS: Network File System Protocol

Specification," RFC 1094, 1989.
[16] Common Internet File System File Access Protocol,

msdn.microsoft.com/library/en-
us/cifs/protocol/cifs.asp.

[17] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and
J.K. Ousterhout, "Measurements of a Distributed File
System," in Proceedings of the Thirteenth Symposium on
Operating Systems Principles, 1991.

[18] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, and D. Noveck, "Network File System
Version 4 Protocol Specification," RFC 3530, 2003.

[19] B. Welch, B. Halevy, D. Black, A. Adamson, and D.
Noveck, "pNFS Operations Summary," Internet Draft,
draft-welch-pnfs-ops-00.txt, 2004.

[20] G. Gibson, B. Welch, G. Goodson, and P. Corbett, "Parallel
NFS Requirements and Design Considerations," Internet
Draft, draft-gibson-pnfs-reqs-00.txt, 2004.

[21] D. Hildebrand and P. Honeyman, "Exporting Storage
Systems in a Scalable Manner with pNFS," in Proceedings of
the 22nd IEEE - 13th NASA Goddard Conference on Mass
Storage Systems and Technologies, Monterey, CA, 2005.

[22] M. Rosenblum and J.K. Ousterhout, "The Design and
Implementation of a Log-Structured File System," ACM
Transactions on Computer Systems, (10)1, pp. 26-52, 1992.

[23] J.H. Hartman and J.K. Ousterhout, "The Zebra Striped
Network File System," ACM Transactions on Computer
Systems, (13)3, 1995.

[24] P.F. Corbett and D.G. Feitelson, "The Vesta Parallel File
System," ACM Transactions on Computer Systems, (14)3,
pp. 225-264, 1996.

[25] EMC Celerra HighRoad Whitepaper, www.emc.com,
2001.

[26] A.L. Drapeau, K. Shirriff, E.K. Lee, J.H. Hartman, E.L.
Miller, S. Seshan, R.H. Katz, K. Lutz, D.A. Patterson, P.H.
Chen, and G.A. Gibson, "RAID-II: A High-Bandwidth
Network File Server," in Proceedings of the 21st
International Symposium on Computer Architecture, 1994.

[27] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B.
Nitzberg, W. Saphir, and M. Snir, MPI: The Complete
Reference, volume 2--The MPI-2 Extensions. Cambridge,
MA, 1998.

[28] R. Thakur, W. Gropp, and E. Lusk, "Data Sieving and
Collective I/O in ROMIO," in Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, 1999.

[29] J. Satran, D. Smith, K. Meth, O. Biran, J. Hafner, C.
Sapuntzakis, M. Bakke, M. Wakeley, L. Dalle Ore, P. Von
Stamwitz, R. Haagens, M. Chadalapaka, E. Zeidner, and Y.

Klein, "iSCSI," Internet Draft, draft-ietf-ips-
iscsi-08.txt, 2001.

[30] R. Brightwell, A.B. Maccabe, R. Riesen, and T. Hudson,
"The Portals 3.3 Message Passing Interface," 2003.

[31] R. Srinivasan, "RPC: Remote Procedure Call Protocol
Specification Version 2," RFC 1831, 1995.

[32] Unidata Program Center, "Where is NetCDF Used?,"
www.unidata.ucar.edu/software/netcdf/usag
e.html.

[33] J. Katcher, "PostMark: A New File System Benchmark,"
Technical Report TR3022, Network Appliance, 1997.

[34] IOR Benchmark,
www.llnl.gov/asci/purple/benchmarks/limit
ed/ior.

[35] W.D. Norcott and D. Capps, "IOZone Filesystem
Benchmark," 2003.

[36] FLASH I/O Benchmark,
flash.uchicago.edu/~jbgallag/io_bench.

[37] ATLAS, atlasinfo.cern.ch.
[38] The Large Hadron Collider, lhc.web.cern.ch.

