

CITI Technical Report 05-01
Exporting Storage Systems in a

Scalable Manner with pNFS

 Dean Hildebrand Peter Honeyman
 dhildebz@eecs.umich.edu honey@citi.umich.edu

ABSTRACT

To meet enterprise and grand challenge-scale performance and interoperability
requirements, a group of engineers—initially ad-hoc but now integrated into the
IETF—is designing extensions to NFSv4 that provide parallel access to storage
systems. This paper gives an overview of pNFS, an emerging NFSv4 extension that
promises file access scalability plus operating system and storage system
independence. pNFS bypasses the server bottleneck by enabling direct access to
storage by NFSv4 clients and by providing a framework for the co-existence of
NFSv4 with other file access protocols. In this paper, we describe an implementation
that demonstrates and validates pNFS’ potential. The I/O throughput of our prototype
matches that of its exported file system and far exceeds standard NFSv4.

February 1, 2005

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

Exporting Storage Systems in a Scalable Manner with pNFS

Dean Hildebrand
Center for Information Technology Integration

University of Michigan
dhildebz@eecs.umich.edu

Peter Honeyman
Center for Information Technology Integration

University of Michigan
honey@citi.umich.edu

Abstract

To meet enterprise and grand challenge-scale
performance and interoperability requirements, a group
of engineers—initially ad-hoc but now integrated into the
IETF—is designing extensions to NFSv4 that provide
parallel access to storage systems. This paper gives an
overview of pNFS, an emerging NFSv4 extension that
promises file access scalability plus operating system and
storage system independence. pNFS bypasses the server
bottleneck by enabling direct access to storage by NFSv4
clients and by providing a framework for the co-existence
of NFSv4 with other file access protocols. In this paper,
we describe an implementation that demonstrates and
validates pNFS’ potential. The I/O throughput of our
prototype matches that of its exported file system and far
exceeds standard NFSv4.

1. Introduction

Protocol standards enable interoperability and reduce
development and management costs, but are only as
useful as the number of parties that use them. Increasing
performance requirements have spawned innovative
protocols such as iSCSI [1], DAFS [2], OSD [3] and FCP
[4], yet the emergence of so many standards threatens to
reduce interoperability among storage systems.

Interoperability also depends on the operating system
and hardware platform. High-performance file systems,
which provide direct and parallel access to storage, are
highly specialized, and often limited to a single operating
system and hardware platform. However, grid
computing, legacy software, and other factors are
increasing the heterogeneity of clients, creating a schism
between file systems and their users.

Many application domains demonstrate the need for
high bandwidth, concurrent, and secure access to large
datasets across a variety of platforms and file systems.
DNA sequence, face and other biometrics, and artwork
databases are just a few examples of files that can range
up to tens of gigabytes in size and are often loaded
independently by concurrent clients [5, 6]. Full database
searches are often unavoidable even when using indexing
[7].

The Earth Observing System Data and Information
System (EOSDIS) manages data from NASA's earth
science research satellites and field measurement
programs, providing data archive, distribution, and
information management services. In August 1999,
EOSDIS data holdings were estimated at 284 TB while
continuing to generate more than 850 GB per day. In
2000, EOSDIS supported more than 104,000 unique users
and fulfilled more than 3.4 million product requests [8].

Digital movie studios generate terabytes of data every
day and require access from Sun, Windows, SGI, and
Linux workstations and compute clusters [9]. Users edit
files in place or copy files between heterogeneous data
stores.

High end scientific computing performs physical
simulations with visualization and fault-tolerance check
pointing. The Advanced Simulation and Computing
program in the U.S. Department of Energy estimates that
one GB/s of aggregate I/O throughput is necessary for
every teraflop of computing power [10], which suggests
that file systems will need to support data transfer rates of
500 GB/s by 2008.

Distributed file systems such as NFS [11] and CIFS
[12] are widely used to bridge the interoperability gap,
but their performance is only a fraction of the exported
storage system’s. To this day, they continue to have
limited network, CPU, memory, and disk I/O resources
due to their “single server” design, which binds one
network endpoint to all files in a file system. NFSv4 [13]
improves functionality by providing integrated security
and locking frameworks, and migration and replication
features, but retains the single server bottleneck.

Partitioning a collection of files among multiple NFS
servers helps work around this limitation but increases
management cost and fails to address scalable access to a
single file or directory, a critical requirement of today’s
high performance applications1 [7]. Some progress has
been made in aggregating partitioned NFS servers into a
single file system image [14-16], but these systems are
unable to export third party file systems.

Distributed file systems are at another disadvantage
when their view of storage is through a file system node.

1 Many programs will generate a single large file instead of many

smaller ones to ease application development and data management.

 102

Data must always travel through the intermediary node
whether it is traveling in or out of storage. This extra
layer of processing prevents distributed file systems from
matching the performance of the exported file system,
even for a single client.

A common architectural framework should be able to
encompass all storage architectures, i.e., symmetric or
asymmetric2; in-band or out-of-band; and block-, object-,
or file-based; without sacrificing performance. The
NFSv4 file service, with its global namespace, high level
of interoperability and portability, simple and cost-
effective management, and integrated security provides an
ideal base for such a framework.

This paper gives an overview of pNFS [17, 18] and
describes a prototype implementation. pNFS is an
extension of NFSv4 that provides file access scalability
plus operating system, hardware platform, and storage
system independence. It eliminates the performance
bottlenecks of NFS by enabling the NFSv4 client for
direct storage access. pNFS facilitates interoperability
between standard protocols by providing a framework for
the co-existence of NFSv4 and all other file access
protocols. We have implemented a prototype that
demonstrates and validates pNFS’ potential. The I/O
throughput of our prototype equals that of its exported
file system (PVFS2 [19]) and is dramatically better than
standard NFSv4.

The remainder of this paper is organized as follows.
Section 2 describes the pNFS architecture. Sections 3
and 4 present PVFS2 and our pNFS prototype. Section 5
reports our measurements of the performance of our
Linux-based prototype. Section 6 discusses related work.
Section 7 discusses future work, including the impact of
locking and security support on the pNFS architecture.
Section 8 summarizes and concludes the paper.

2. pNFS architecture

In pNFS, the NFS client and server continue to
perform control and file management operations and
relegate the responsibility for achieving scalable I/O
throughput to a storage-specific driver. By separating
control and data flows, pNFS allows data to transfer in
parallel from many clients to many storage endpoints.
This removes the single server bottleneck by distributing
I/O across the bisectional bandwidth of the storage
network between the clients and storage devices.

Figure 1 depicts the architecture of pNFS, which adds
a layout driver, an I/O driver, and a file layout retrieval
interface to the standard NFSv4 architecture.

2 In symmetric file systems, nodes perform identical tasks.

Asymmetric file systems assign distinct roles to nodes, e.g., metadata
management, storage recovery, etc.

Figure 1. pNFS architecture

pNFS extends NFSv4 with the addition of a
layout driver, an I/O driver, and a file layout
retrieval interface. The pNFS server obtains an
opaque file layout map from the storage system
and transfers it to the pNFS client and
subsequently to its layout driver for direct and
parallel data access.

A benefit of pNFS is its ability to match the
performance of the underlying storage system’s native
client while continuing to support all standard NFSv4
features. This support is ensured by introducing pNFS
extensions into a “minor version”, a standard extension
mechanism of NFSv4. In addition, pNFS does not
impose restrictions that might limit the underlying file
system’s ability to provide quality-enhancing features
such as usage statistics or storage management interfaces.

2.1. Design goals

The goals of pNFS are:
• Enable implementations to match or exceed the

performance of the underlying file system. Provide
high per-file, per-directory and per-file system
bandwidth and capacity.

• Support any storage protocol, including but not
limited to block, object, and file storage protocols.

• Obey NFSv4 minor versioning rules, which state that
all future versions must have legacy support.

• Operate over any NFSv4 internet infrastructure.
Support existing storage protocols and infrastructures,
e.g., SBC on Fibre Channel [20] and iSCSI, OSD on
Fibre Channel and iSCSI, NFSv4, etc.

• Handle arbitrarily large file layout maps.

2.2. Layout and I/O driver

The layout driver understands the file layout of the
storage system. A layout consists of all information
required to access any byte range of a file. For example,
a block layout may contain information about block size,
offset of the first block on each storage device, and an
array of tuples that contains device identifiers, block
numbers, and block counts. An object layout specifies the

 103

storage devices for a file and the information necessary to
translate a logical byte sequence into a collection of
objects. A file layout is similar to an object layout but
uses file handles instead of object identifiers. The layout
driver uses the layout to translate read and write requests
from the pNFS client into I/O requests understood by the
storage devices. The I/O driver performs raw I/O, e.g.,
Myrinet GM [21], Infiniband [22], TCP/IP, to the storage
nodes.

To ensure support for all I/O protocols, every pNFS
implementation must include a standard interface that the
layout driver implements. The layout driver can be
specialized or (preferably) implement a standard protocol
such as the Fibre Channel Protocol (FCP), allowing
multiple file systems to all share the same layout driver.
Storage systems adopting this architecture reduce
development and management obligations by obviating a
specialized file system client, which reduces the cost of
high-end storage systems.

2.3. NFSv4 protocol extensions

2.3.1. File system attribute
A new file system attribute, LAYOUT_CLASSES,

contains the supported layout drivers. A pNFS client
retrieves this attribute when encountering an unknown
file system identifier and uses it to select an appropriate
layout driver. To prevent namespace collisions, a global
registry maintainer such as IANA [23] will store the
layout driver identifiers.

2.3.2. LAYOUTGET
The LAYOUTGET operation obtains file access

information for a byte-range of a file, e.g., the file layout,
from the underlying storage system. The client issues a
LAYOUTGET operation after it opens a file and before it
accesses file data. Implementations determine the
frequency and byte range of the request. A new
procedure is required since some systems limit attribute
size.

The arguments are:
• File handle
• Offset
• Extent
• Access type
• Open owner
• Maximum count and cookie

The file handle uniquely identifies the file. The offset
and extent arguments specify the requested region of the
file. The access type specifies whether the requested file
layout information is for reading, writing, or both. This is
useful for file systems that, for example, provide read-

only replicas of data. The server uses the NFSv4 “open
owner” to verify that the process’ file access permissions
are valid and to renew lease timeouts for the client. The
maximum count specifies the maximum number of bytes
for the result, including XDR overhead. The client
retrieves the remaining layout information using the
cookie, similar to the NFSv4 READDIR operation.

The returned values are:
• Offset
• Extent
• Cookie
• Opaque layout

The returned offset and extent values must describe a

byte-range at least as large as the requested size. By
returning file layout information to the client as an
opaque object, pNFS is able to support all file layout
types. At no time does the pNFS client attempt to
interpret this object, it acts simply as a conduit between
the storage system and the layout driver. The byte range
described by the returned layout may be larger than the
requested size due to block alignments, layout
prefetching, etc.

2.3.3. LAYOUTCOMMIT
The LAYOUTCOMMIT operation commits changes

to the layout information. The client uses this operation
to commit or discard provisionally allocated space, update
the end of file, and fill in existing holes in the layout.

2.3.4. LAYOUTRETURN
This operation informs the server that obtained layout

information is no longer required. Clients return a layout
voluntarily or when they receive a server recall request.

2.3.5. CB_LAYOUTRECALL
If layout information is exclusive to a specific client

and other clients require conflicting access, the server can
recall a layout from the client using the
CB_LAYOUTRECALL callback operation.3 The client
should complete any in-flight I/O operations using the
recalled layout and write any buffered dirty data directly
to storage before returning the layout, or write it later
using normal NFSv4 write operations.

2.3.6. GETDEVINFO and GETDEVLIST
The GETDEVINFO and GETDEVLIST operations

retrieve additional information about one or more storage
nodes. The layout driver executes these operations if the
device information inside the file layout does not provide
enough information for file access, e.g., SAN volume
label information or port numbers.

3 NFSv4 already contains a callback operation infrastructure for

delegation support.

 104

3. Parallel Virtual File System Version 2

As proof of concept, we implemented a pNFS
prototype that exports the PVFS2 file system. This
section presents an overview of PVFS2, a user-level,
open-source, scalable, asymmetric parallel file system
designed as a research tool and for production
environments. We chose PVFS2 because its user level
design provides a streamlined architecture for rapid
prototyping of new ideas, which overrides its lack of
locking and security support. Figure 2 displays the
PVFS2 architecture.

Figure 2. PVFS2 architecture

PVFS2 consists of clients, metadata servers,
and storage nodes. The PVFS2 kernel module
enables integration with the local file system.
Data is striped across storage nodes using a
user-defined algorithm.

PVFS2 consists of clients, storage nodes, and metadata
servers. Metadata servers store all information about the
file system in a Berkeley DB database, distributing
metadata via a hash on the file name. File data is striped
across storage nodes, which can be increased in number
as needed.

PVFS2 uses algorithmic file layouts for distributing
data among the storage nodes. The data distribution
algorithm is user defined, defaulting to round-robin
striping. The clients and storage nodes share the data
distribution algorithm, which does not change during the
lifetime of the file. A series of file handles, one for each
storage node, uniquely identifies the set of file data
stripes. Data is not committed with the metadata server;
instead, the client ensures that all data is committed to
storage by negotiating with each individual storage node.

An operating system specific kernel module exists for
integration into a user’s environment and access by other
file systems such as NFS. It allows users to mount and
access PVFS2 through a POSIX interface. Currently, an
implementation of this module exists only on Linux.
Data is memory mapped between the kernel module and
the PVFS2 client program to avoid extra data copies.

Large parallel applications generally manage data
consistency through organized and cooperative clients
instead of locks. As such, PVFS2 breaks POSIX
consistency semantics, which require sequential
consistency of file system operations, and replaces them
with nonconflicting writes semantics, guaranteeing that
writes to non-overlapping file regions will be visible on
all subsequent reads once the write completes.

4. pNFS prototype

Prototypes of new protocols are essential for their
clarification and provide insight and evidence of their
viability. A minimum requirement for the fitness of pNFS
is its ability to provide parallel access to arbitrary storage
systems. This agnosticism toward storage system
particulars is vital for widespread adoption. As such, our
prototype focuses on the retrieval and processing of the
file layout to demonstrate that pNFS is agnostic of the
underlying storage system and can match the performance
of the storage system it exports. Figure 3 displays the
architecture of our pNFS prototype with PVFS2 as the
exported file system.

Figure 3. pNFS prototype architecture

Layout and I/O drivers communicate with the
PVFS2 user mode client for data access. The
pNFS server obtains the opaque file layout from
the PVFS2 metadata server via the PVFS2
client, transferring it back to the pNFS client and
subsequently to the PVFS2 layout driver for
direct and parallel data access.

4.1. File Layout
Numerous file layout schemes exist today, and more

will be invented in the future, so pNFS is intentionally
absent of any knowledge of the underlying file system’s
file layout information. Among the possible ways to
distribute data among storage nodes are:

 105

• Round Robin – Blocks striped on storage nodes in
round robin fashion, e.g., RAID0.

• Replicated – Each block exists on more than one
storage node, e.g., RAID1.

• Parity – Round robin striping with distributed parity,
e.g., RAID5.

• Nested – Layouts composed from simpler ones [24].

The PVFS2 file layout information consists of:

• File system id
• Set of file handles, one for each storage node
• Distribution id, uniquely defines layout algorithm
• Distribution parameters, e.g., stripe size

Since a PVFS2 layout applies to an entire file, no

matter what byte range the pNFS client requests using the
LAYOUTGET operation, the returned byte range is the
entire file. Therefore, our prototype requests a layout
only once for each open file, incurring only a single
additional round trip. If the pNFS client is eager with its
requests, it can even eliminate this single round trip time
by including the LAYOUTGET in the same request as the
OPEN operation. We will see the differences between
these two designs in Section 5.

The pNFS server obtains the layout via a new ioctl
operation in the PVFS2 client kernel module. Ideally, a
new Linux layout retrieval VFS operation will supplant
this.

4.2. Layout and I/O Drivers
The PVFS2 layout driver registers itself with the pNFS

client along with a unique identifier. The pNFS client
matches this identifier with the value of the
LAYOUT_CLASSES attribute to select the correct layout
driver for file access. If there is no matching layout
driver, standard NFSv4 read and write mechanisms are
used as the default.

The PVFS2 layout driver, a pared down version of a
PVFS2 client, supports only three operations: read, write,
and a layout injection ioctl. Our prototype layout driver
registers these operations, defined by the file_operations
structure, with the pNFS client.

The syntax for these functions is:
ssize_t read(struct file* file,char __user* buf,
 size_t count, loff_t* offset)
ssize_t write(struct file* file,const char __user*
 buf,size_t count,loff_t* offset)
int ioctl(struct inode* ino,struct file* file,
 unsigned int cmd,unsigned long arg)

To inject the file layout map, the pNFS client passes

the opaque array as an argument to the ioctl function.
Once the layout driver has finished processing the layout,
the pNFS client is free to call the driver’s read and write
functions. When data access is complete, the pNFS client
issues a standard NFSv4 close operation to the server.

5. Evaluation

In this section, we present the results of experiments
that assess the performance of our pNFS prototype. We
demonstrate that pNFS can use the generic layout driver
interface to scale with PVFS2, and can achieve
performance vastly superior to NFSv4.

Our experiments were performed on a network of forty
identical nodes partitioned into twenty-three clients,
sixteen storage nodes, and one metadata server. Each
node is a 2 GHz dual-processor Opteron with 2 GB of
DDR RAM and four Western Digital Caviar Serial ATA
disks, which have a nominal data rate of 150 MB/s and an
average seek time of 8.9 ms. The disks are configured
with software RAID 0. The operating system kernel is
Linux 2.6.9-rc3. The version of PVFS2 is 1.0.1.

We test four configurations: two accessing PVFS2
storage nodes directly via pNFS and PVFS2 clients; and
two with unmodified NFSv4 clients, one accessing an
Ext3 file system, and one accessing a PVFS2 file system
with the NFSv4 server, exported PVFS2 client and
PVFS2 metadata server all residing on the metadata
server. The metadata server runs eight pNFS or NFSv4
server threads when exporting the PVFS2 or Ext3 file
systems. We verified that varying the number of pNFS or
NFSv4 server threads does not affect its performance.

We compare the aggregate I/O throughput using the
IOZone [25] benchmark tool as we increase the number
of clients. Since we see pNFS as a possible replacement
for high-performance file system clients, our goal is for
pNFS to match PVFS2 performance. The first set of
experiments involves two processes on each client
reading and writing separate 200 MB files. The second
set of experiments involves each client reading and
writing disjoint 100 MB portions of a single pre-existing
file. The aggregate throughput is calculated when the last
client completes its task. The presented value is the
average over several executions of the benchmark. The
write timing includes a flush of the client’s cache to the
server. pNFS and PVFS2 perform synchronous data and
metadata updates while NFSv4 exports Ext3 and PVFS2
synchronously. All read experiments use warm storage
node caches to eliminate disk access irregularities.

 106

Figure 4. Aggregate write throughput with
sixteen clients and separate files. Each
client spawns two write processes. pNFS
and PVFS2 use sixteen storage nodes.
pNFS scales with PVFS2 while NFSv4
performance remains flat.

Figure 5. Aggregate write throughput with
sixteen clients and a single file. pNFS and
PVFS2 use sixteen storage nodes. pNFS
scales with PVFS2 while NFSv4 performance
remains flat with PVFS2 and approaches the
maximum single link bandwidth with Ext3.

Figure 6. Aggregate read throughput with
twenty-three clients and separate files. Each
client spawns two read processes. pNFS
and PVFS2 use sixteen storage nodes.
pNFS and PVFS2 scale linearly while NFSv4
performance remains flat.

Figure 7. Aggregate read throughput with
twenty-three clients and a single file. pNFS
and PVFS2 use sixteen storage nodes.
pNFS and PVFS2 scale linearly while NFSv4
performance remains flat. pNFS
performance is slightly below PVFS2 due to
increasing layout retrieval congestion.
pNFS-2, which removes the extra round trip
time of LAYOUTGET, matches PVFS2’s
performance.

Our first experiment investigates the overhead of the
LAYOUTGET operation in pNFS with a single client.
Unlike NFS versions 2 and 3, NFSv4 is a stateful
protocol in which a client must call a server to open a file;
the first time the client opens the file, it must also send a
call to the server to coordinate sequence numbers. With
PVFS2, only a single LAYOUTGET is required after the
client opens the file, so that the overhead is a single
roundtrip or none at all, if it is included together with the
open request.

In the worst-case, a LAYOUTGET request is required
on every read or write. In our test environment, the time
for a LAYOUTGET request is 0.85 ms. On a 1MB
transfer, this reduces throughput by only 3-4 percent; with
a 10MB transfer, the relative cost is less than 0.5 percent;
and is negligible as transfer size increases. The worst-
case scenario should be a rare occurrence as, similar to
read-ahead algorithms for reading data, clients can be
optimistic in the ranges they request using the
LAYOUTGET operation.

 107

In all experiments, the performance of NFSv4
exporting PVFS2 achieves an aggregate read and write
throughput of 1.9 MB/s and 0.9 MB/s respectively. We
discuss the causes for this poor performance in Section
5.1.

Figures 4 and 5 present the write performance with
each client writing to separate files and a single file.
NFSv4 with Ext3 achieves an average aggregate
throughput of 38 MB/s and 68 MB/s for the separate and
single file experiments. pNFS scales equivalently to
PVFS2, reaching a maximum aggregate throughput of
384 MB/s with sixteen processes for separate files and
240 MB/s with seven clients for a single file. With
separate files, the bottleneck is the number of storage
nodes while metadata processing limits the performance
with a single file.

Figure 6 shows the read performance with two
processes on each client writing to separate files. NFSv4
with Ext3 achieves its maximum network bandwidth of
115 MB/s. pNFS again achieves the same performance as
PVFS2. Initially, the extra overhead required to write to
sixteen storage nodes reduces throughput for two
processes to 27 MB/s, but it scales almost linearly,
reaching an aggregate throughput of 550 MB/s with 46
processes.

Figure 7 shows the read performance with each client
writing to disjoint portions of the same pre-existing file.
NFSv4 with Ext3 again achieves its maximum network
bandwidth of 115 MB/s. PVFS2 scales linearly, starting
with an aggregate throughput of 15 MB/s with a single
client and increasing to 360 MB/s with twenty-three
clients. Our pNFS prototype, which incurs a single round
trip time for the LAYOUTGET, suffers slightly as the
PVFS2 layout retrieval function takes longer with
increasing numbers of clients, reaching an aggregate
throughput of 311 MB/s. A modified prototype combines
the LAYOUTGET and OPEN operations into a single
call. When the (non-scalable) LAYOUTGET operation is
excluded from the measurements, the prototype labelled
pNFS-2, matches the performance of PVFS2.

5.1. Discussion

As Figure 7 demonstrates, pNFS scalability can be
adversely affected if the LAYOUTGET operation is
costly or does not scale with the number of clients. One
way a pNFS client can reduce the number of layout
retrievals is to request the entire file layout when it opens
the file. If the file system fulfills the request, the client
avoids an extra round trip. If the file system cannot fulfill
such a request, e.g., large block layouts, it returns nothing
and the pNFS client requests the layout when it knows the
range of the file it will access. The layout driver may also
be a useful guide to the pNFS client regarding layout
retrieval.

One reason for the poor performance of NFSv4 with
PVFS2 is a difference in block sizes. Per-read and per-
write processing overhead is small in NFSv4, which
justifies a small block size—32KB on Linux. PVFS2 has
a much larger per-read and per-write overhead due to the
larger number of servers it must contact, and therefore
uses a minimum block size of 4MB. In addition, PVFS2
does not perform write gathering on the client, assuming
each data request to be a multiple of the block size. To
make matters worse, the Linux kernel breaks down the
NFSv4 client’s request on the NFSv4 server into 4KB
chunks before it issues the requests to the PVFS2 client.
Data transfer overhead, e.g., creating connections to the
storage nodes, determining stripe locations, etc.,
dominates with 4KB requests, with a devastating impact
on performance.

The lack of a commit operation in the PVFS2 kernel
module also reduces the write performance of NFSv4
with PVFS2. To prevent data loss, PVFS2 commits every
write operation, ignoring the NFSv4 COMMIT operation.
Write gathering [26] on the server combined with a
commit from the PVFS2 client would comply with
NFSv4 fault tolerance semantics and improve PVFS2’s
interaction with the disk.

6. Related work

AFS [27] and NFSv3 constrain file modifications to a
single server, a bottleneck for a single file or directory.
AFS file system design of volumes, cells, sites, etc and its
lack of native file access, impairs its integration with high
performance file systems. NFSv3 has long suffered from
well-known security problems, which precludes its use in
a WAN environment.

GridFTP [28] is used extensively in the grid to enable
high throughput, operating system independent, and
secure WAN access to high-performance file systems.
Successful and popular, GridFTP nevertheless has some
serious limitations: it copies data instead of providing
shared access to a single copy, complicating its
consistency model and decreasing storage capacity; lacks
a global namespace; and cannot integrate with the local
file system.

The Storage Resource Broker (SRB) [29] aggregates
storage resources, e.g., a file system, an archival system,
or a database, into a single data catalogue. SRB also has
some serious limitations: it does not enable parallel I/O to
multiple storage endpoints, and cannot integrate with the
local file system.

Many high-performance file systems exhibit a lack of
interoperability and portability and can benefit from the
open standards, reduced development costs, and storage
service agnosticism of pNFS. One type is limited to
storage area networks (SANs), a network that utilizes the
fixed-sized block SCSI storage device command set and

 108

its Fibre Channel SCSI transport. Examples in this class
include IBM’s TotalStorage SAN FS [30], GPFS [31],
Red Hat’s GFS [32] and Veritas’ SANPoint Direct [33].
The Fibre Channel network limitation may disappear with
the emergence of iSCSI.

EMC’s HighRoad [34] uses the NFS or CIFS protocol
for its control operations and stores data in an aggregated
LAN and SAN environment. Its use of file semantics
facilitates data sharing in SAN environments, but is
limited to the EMC Symmetrix storage system.

Another type utilizes SCSI’s newly emerging
command set, Object Storage Device (OSD), which
transmits variable length storage objects over SCSI
transports. Examples in this class include Panasas’
ActiveScale [35], Lustre [36] and an object based version
of IBM’s TotalStorage SAN FS [37].

Disk striping [38] is not a new concept and was first
utilized by by the I/O subsystems of early super
computers [39]. To our knowledge, the Swift file system
[40] was the first to stripe data across multiple servers in
a distributed environment.

7. Future work

7.1. Locking

Mandatory locking requires an additional piece of
shared state between the NFSv4 client and server, a
unique identifier of the locking process. This state is in
addition to the client identifier that identifies the client
machine. Locking support mandates that the client sends
the locking identifier along with every read and write
operation.

How pNFS clients will utilize their locks on the
storage nodes is not standardized as of the writing of this
paper. Several possibilities exist: enable the storage
nodes to interpret NFSv4 lock identifiers, bundle a new
pNFS operation to retrieve file system specific lock
information with the NFSv4 LOCK operation, or include
lock information in existing opaque file layout.

7.2. Security considerations

Separate control and data paths in pNFS introduce new
security concerns to NFSv4. Although RPCSEC_GSS
will continue to secure the NFSv4 control path, securing
the data path requires additional effort. The current pNFS
operations Internet Draft [41] does not define the new
security architecture, instead describing the general
mechanisms that will be required.

 It is expected that file storage protocols will use the
same security mechanisms between the client and storage
nodes as it does between the pNFS client and server.

Object storage employs revocable cryptographic
capabilities for file system objects that the metadata
server passes to clients. For data access, the layout driver
requires the correct capability in order to access the
storage nodes. It is expected that the capability will be
passed to the layout driver within the opaque layout
object.

Block storage access protocols rely on SAN-based
security, trusting clients to access only their allotted
blocks. LUN masking/unmapping and zone-based
security schemes can also fence in clients to specific data
blocks. Some systems also employ IPsec to secure the
data stream. Placing more trust in the client for SAN file
systems is a change to the NFS trust model.

7.3. Caching

PVFS2 does not currently have a client data cache, and
therefore neither does our pNFS prototype. Investigation
is required to determine if standard NFSv4 consistency
mechanisms are sufficient for use with high-performance
file systems.

File layout caching will become critical depending on
the access pattern. Our prototype caches file layout
information while a file is open, but does not include
support for modifying the layout or its invalidation by the
pNFS server. The implementation of the remaining pNFS
operations, LAYOUTRETURN, LAYOUTCOMMIT, and
CB_LAYOUTRECALL will clarify file layout issues.

7.4. Additional issues and features

The following themes are also under investigation:
• Investigation is required into the impact that large file

layouts.
• MPI-IO support.
• Strided LAYOUTGET requests.
• Group LAYOUTGET requests.
• Symmetric pNFS servers.

8. Conclusions

This paper describes an implementation of pNFS, an
NFSv4 extension that bypasses the server bottleneck,
enabling direct and parallel storage access. pNFS clients
can interact with multiple storage systems on multiple
hardware platforms, or access a single file via multiple
I/O protocols. In time, open-source pNFS clients may
obviate specialized client support for access to high-
performance file systems.

Our pNFS prototype demonstrates that it is possible to
achieve high throughput access to a high-performance file
system while retaining the file system independence of
the NFSv4 protocol. Experiments demonstrate that the

 109

prototype achieves aggregate throughput equal to that of
its exported file system and far exceeds standard NFSv4
performance. As the high performance community
continues to manage larger and larger files in ever more
diverse environments, we see pNFS as an indispensable
tool for data access.

9. Acknowledgements

This work supported by Sandia National Labs under
contract number 272684. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. We thank Jim Schutt,
Ruth Klundt, Lee Ward, Gary Grider and James Nunez
for their valuable insights and system support and Rob
Ross, Neill Miller and Robert Latham for their help with
PVFS2.

References

[1] J. Satran, D. Smith, K. Meth, O. Biran, J. Hafner, C.
Sapuntzakis, M. Bakke, M. Wakeley, L. Dalle Ore,
P. Von Stamwitz, R. Haagens, M. Chadalapaka, E.
Zeidner, and Y. Klein, "iSCSI," IPS Internet Draft,
www.ietf.org/internetdrafts/draft-
ietf-ips-iscsi-08.txt, 2001.

[2] DAFS Collaborative, "DAFS: Direct Access File
System Protocol,"
www.dafscollaborative.org, September
2001.

[3] T10 Committee, "Draft OSD Standard," Storage
Networking Industry Association (SNIA),
www.t10.org/ftp/t10/drafts/osd/osd-
r10.pdf, July 2004.

[4] T10 Committee, "Draft Fibre Channel Protocol - 3
(FCP-3) Standard,"
www.t10.org/ftp/t10/drafts/fcp3/fcp
3r03d.pdf, January 2005.

[5] S. Chacko and S. Fellini, "Easy Large-Scale
Bioinformatics on the NIH Biowulf Supercluster,"
biowulf.nih.gov/present/easy.html,
2003.

[6] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q.
Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D.
Petkovic, D Steele, and P. Yanker, "Query by Image
and Video Content: the QBIC System," IEEE
Computer, September 1995.

[7] S. Berchtold, C. Boehm, D.A. Keim, and H.
Kriegel, "A Cost Model For Nearest Neighbor
Search in High-Dimensional Data Space," ACM
PODS, May 1997.

[8] "Earth Observing System Data and Information
System,"
spsosun.gsfc.nasa.gov/eosinfo/EOSDI
S_Site/index.html.

[9] D. Strauss, "Linux Helps Bring Titanic to Life,"
Linux Journal, February 1998.

[10] "SGS File System RFP," DOE NNCA and DOD
NSA, April 25, 2001.

[11] Sun Microsystems Inc., "NFS: Network File System
Protocol Specification," RFC 1094, March 1989.

[12] Microsoft Corporation, "CIFS Protocol,"
msdn.microsoft.com/library/default.
asp?url=/library/en-
us/cifs/protocol/cifs.asp.

[13] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck, "Network File
System Version 4 Protocol Specirfication,"
www.ietf.org/rfc/rfc3530.txt, April
2003.

[14] G.H. Kim, R.G. Minnich, and L. McVoy, "Bigfoot-
NFS: A Parallel File-Striping NFS Server (Extended
Abstract)," www.bitmover.com/lm, 1994.

[15] F. Garcia-Carballeira, A. Calderon, J. Carretero, J.
Fernandez, and J.M. Perez, "The Design of the
Expand File System," International Journal of High
Performance Computing Applications, vol. 17, pp.
21-37, 2003.

[16] P. Lombard and Y. Denneulin, "nfsp: A Distributed
NFS Server for Clusters of Workstations," IPDPS
2002, 2002.

[17] G. Gibson and P. Corbett, "pNFS Problem
Statement," Internet Draft,
www.ietf.org/internet-drafts/draft-
gibson-pnfs-problem-statement-
01.txt, July 2004.

[18] G. Gibson, B. Welch, G. Goodson, and P. Corbett,
"Parallel NFS Requirements and Design
Considerations," Internet Draft,
www.ietf.org/internet-drafts/draft-
gibson-pnfs-reqs-00.txt, October 2004.

[19] PVFS2 Development Team, "Parallel Virtual File
System, Version 2," www.pvfs.org/pvfs2,
September 2003.

[20] T.M. Anderson and R.S. Cornelius, "High
Performance Switching with Fibre Channel," Digest
of Papers Compcon, pp. 261-268, 1992.

[21] N.J. Boden, D. Cohen, R.E. Felderman, A.E.
Kulawik, and C.L. Seitz, "Myrinet A Gigabit-per-
Second Local-Area Network," IEEE Micro, vol. 15,
pp. 29-36, 1995.

[22] "Infiniband. Arch. Spec. Vol 1 & 2. Rel. 1.0,"
www.infinibandta.org/download_spec1
0.html, 2000.

[23] "Internet Assigned Numbers Authority,"
www.iana.org.

 110

[24] F. Isaila and W.F. Tichy, "Clusterfile: A Flexible
Physical Layout Parallel File System," 3rd IEEE
International Conference on Cluster Computing,
October 2001.

[25] W.D. Norcott and D. Capps, "IOZone Filesystem
Benchmark," www.iozone.org, 2003.

[26] C. Juszczak, "Improving the Write Performance of
an NFS Server," In Proceedings of the USENIX
Winter 1994 Technical Conference, pp. 247--259,
1994.

[27] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West,
"Scale and Performance in a distributed file
system," ACM Transactions on Computer Systems,
vol. 6, 1988.

[28] B. Allcock, J. Bester, J. Bresnahan, A. L.
Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, and S. Tuecke., "Data
Management and Transfer in High Performance
Computational Grid Environments," Parallel
Computing Journal, vol. 28, pp. 749-771, May
2002.

[29] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The
SDSC Storage Resource Broker," In Proceedings of
CASCON'98, 1998.

[30] "IBM TotalStorage: Introducing the SAN File
System,"
www.redbooks.ibm.com/redbooks/pdfs/
sg247057.pdf, November 2003.

[31] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk
File System for Large Computing Clusters,"
USENIX Conference on File and Storage
Technologies, 2002.

[32] Red Hat Software Inc., "Red Hat Global File
System,"
www.redhat.com/software/rha/gfs.

[33] "VERITAS SANPoint Direct™ File Access,"
www.veritas.com, April 2002.

[34] "EMC Celerra HighRoad Whitepaper,"
www.emc.com, December 2001.

[35] Panasas Inc., "Panasas ActiveScale File System
Datasheet," www.panasas.com, 2003.

[36] Cluster File Systems Inc., "Lustre: A Scalable,
High-Performance File System,"
www.lustre.org, 2002.

[37] A. Azagury, V. Dreizin, M. Factor, E. Henis, D.
Naor, N. Rinetzky, J. Satran, A. Tavory, and L.
Yerushalmi, "Towards an Object Store," IBM
Storage Systems Technology Workshop, November
2002.

[38] Kenneth Salem and Hector Garcia-Molina, "Disk
Striping," In Proceedings of the 2nd International
Conference on Data Engineering, pp. 336-342,
1986.

[39] O. G. Johnson, "Three-dimensional wave equation
computations on vector computers," In Proceedings
of the IEEE, vol. 72, January 1984.

[40] L. Cabrera and D.D.E. Long, "SWIFT: Using
Distributed Disk Striping To Provide High I/O Data
Rates," Computing Systems, vol. 4, pp. 405-436,
1991.

[41] B. Welch, B. Halevy, D. Black, A. Adamson, and D.
Noveck, "pNFS Operations Summary," Internet
Draft, www.ietf.org/internet-
drafts/draft-welch-pnfs-ops-00.txt,
October 2004.

 111

