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ABSTRACT 

We report on a high-performance in-kernel web server for Linux known as the 
Threaded linUX http layer, or TUX, for short. TUX uses aggressive network 
layer data caching to accelerate static content delivery, and invokes CGI scripts 
directly from the kernel to accelerate dynamic content generation. We describe 
the TUX web server architecture, modifications included in the patch, and how 
they affect kernel operation and web server performance. 
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1. Introduction 
As the demand for faster and more scalable web 
service increases, system designers have discovered 
ways to improve web server performance and 
scalability by integrating web server functionality 
into operating systems. This trend began when O/S 
designers added system interfaces specifically 
designed for web servers, such as the TransmitFile 
system call in Windows NT [9]. 

Ideally, one could create an O/S whose only purpose 
is to provide HTTP access to a local file system and 
run CGI scripts securely on behalf of web clients. 
Data is cached in the kernel’s address space with 
zero-copy techniques to reduce the overhead 
associated with data copying operations and 
checksum computation. CGI scripts could be invoked 
directly by the kernel, and output from the scripts 
routed directly to the network layer via zero-copy to 
reduce data copying and context switching. 

TUX is an HTTP protocol layer and a web server 
object cache integrated into the Linux kernel. Its aim 
appears to be to approach the ideal of a fully 
integrated web server and operating system [2]. TUX 
stands for Threaded linUX http layer. Created by 
Ingo Molnar, an employee of Red Hat Software and 
long-time Linux kernel developer, TUX takes the 
next step in web server evolution that TCP took 
nearly a decade ago when it was integrated into UNIX 
kernels as a standard feature of networking stacks [4]. 

The TUX web server competed favorably in a web 
server competition earlier this year, performing better 
than web servers of more standard design including 
Microsoft’s IIS on Windows NT [3]. TUX uses 
several general techniques to achieve high 
performance, such as: 

• SMP-friendly multi-threading to complete 
complex requests asynchronously 

• Driving the web server directly from the kernel’s 
networking layer to create a truly network event-
driven server 

• Caching complete responses in the kernel’s 
networking layer to accelerate static content 
delivery 

• Providing a secure interface for generating 
simple dynamic content quickly from within the 
kernel 

• Providing a rich interface for user-level web 
applications to generate complex dynamic 
content in a user-level context 

Molnar predicts it will be easy to adapt TUX’s high 
performance architecture to other operating systems, 
network protocols, and applications [4]. 

In this paper we describe the TUX web server 
architecture, modifications included in the TUX 
Linux kernel patch, and how they affect kernel 
operation and web server performance. We cover its 
basic features in Section 2. Following sections 
discuss specific areas of its design, including its event 
and threading models, and its architectural 
motivations. Those interested in performance 
comparisons should consult the SPEC report [3]. 

2. Basic Features 
TUX serves files directly out of locally accessible file 
systems, including files in ext2, NFS, and DOS FAT 
file systems mounted under the server’s document 
root. It provides a simple and secure programming 
interface, called HTTPAPI, that supports generating 
content dynamically in kernel modules. The interface 
allows C language kernel modules easily to access 
files and other resources from within the kernel 
environment. 
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TUX triggers external CGIs via HTTPAPI. An 
external CGI is a script that generates dynamic 
content from outside the kernel, usually started via a 
fork/exec pair in traditional web servers. The 
HTTPAPI dynamic interface provides enough 
functionality to exec scripts with stdin and stdout 
set up as sockets connected to the client. The logic to 
start external CGIs is an example of how to use 
HTTPAPI, and is included with the TUX patch. See 
net/http/extcgi.c for details. 

CGI scripts may also be triggered by user-level 
activity. This is referred to as a user-level CGI. The 
new http() system call (see below) allows user 
processes to interact with the kernel web server. 

2.1 Protocol support 

TUX supports the basic functions of HTTP version 
1.0 and 1.1. It directly supports the Cookie: and 
Connection: fields. Everything else that is optional 
in the HTTP specification is ignored [10]. 
Specifically, it ignores optional headers such as 
Last-Modified-Time: so it does not support 
efficient client-side and proxy caching yet. 

TUX does not need another in-kernel server such as 
khttpd, nor does it require a backing server such as 
Apache [11, 5]. It handles server-side includes 
correctly to support SPECweb99 dynamic content 
benchmarking. Optionally, however, a backing server 
can handle any request TUX doesn’t recognize, such 
as when it can’t parse HTTP header information in an 
incoming request. Headers it doesn’t recognize as 
required or optional will cause the parser to pass the 
request to a backing server via a fast socket 
redirection mechanism. No modifications to the 
backing server are required to handle the redirected 
requests. The backing server must run on the same 
system as TUX. 

2.2 Configuring TUX 

Configuration starts with the kernel build process. 
After applying the patch, new options appear in the 
kernel’s build configuration menu program allowing 
selection of several TUX build-time options. The 
options appear in the “Networking options” submenu 
when “TCP/IP Networking” is enabled. TUX build 
options include: 

• Threaded linUX HTTP layer (TUX) – this 
enables the following options, and causes the 
kernel build process to compile in the TUX code 
base. Specifying a module here rather than 
building it in disables the following options. 

Addition of this feature is controlled by the 
CONFIG_HTTP macro. 

• CAD and CAD2 modules – this enables the 
inclusion of support for the SPECweb99 CAD 
dynamic application via trusted HTTPAPI 
modules (HTTPAPI is described in further detail 
later in this report). Addition of this feature is 
controlled by the CONFIG_HTTP_CAD macro. 

• External CGI module – this enables support for 
starting CGI programs from within the kernel. It 
can be either built in to the kernel or be built as a 
separate kernel module. Addition of this feature 
is controlled by the CONFIG_HTTP_EXTCGI 
macro. 

• debug TUX – this enables debugging traps and 
extra kernel log output for monitoring TUX 
during operation. This featured is enabled by 
defining the CONFIG_HTTP_DEBUG macro. 

Dynamic configuration of the server is available via 
Linux’s sysctl mechanism. This provides a group 
of files in the /proc file system that, when read, report 
the values of kernel variables, and when written into, 
modify variables in the kernel address space. 

Configurable parameters include: 

• Document root – where the root directory for 
exported web documents resides. The default 
value is /var/www/http. 

• Log file – where the server’s log file resides. The 
default value is /var/log/http. 

• Starting and stopping web service – writing a 
one into /proc/sys/net/http/stop causes web 
service to stop. Restarting and unloading are 
currently unsupported. 

• Redirect port – which port the backing server is 
listening to. The default value is port 8080. 

• Logging – whether the web server is writing log 
output to its log. The default is not to write log 
output. 

• Kernel logging – whether the web server is 
writing verbose debugging output into the 
kernel’s log. The default is not to write log 
output. 

• Reporting thread count – configures how many 
web server threads will start next time web 
service is started. 

• Listening port – which port the TUX web server 
is listening to. The default value is port 80. 
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• Maximum connections – how many connections 
the web server will maintain with clients at once. 
The default value is 10,000 connections, but this 
parameter is currently ignored. 

• Maximum backlog – how many connections can 
wait in the server’s listen backlog queue before 
new connection requests are refused. The default 
value is 2048 connections. 

• Keepalive timeout – how many seconds to keep 
connections with no activity alive. The default 
value is not to maintain a connection keepalive 
timer. 

• Maximum cached file size – how large a file can 
be maintained in the web server’s cache. The 
default value is 100,000 bytes. This prevents a 
single streaming media file from consuming the 
entire web object cache. 

• Mode of forbidden files – configures a file mode 
mask that forbids files to be accessed. The 
default is not to deny any file modes. 

• Mode of allowed files – configures a file mode 
mask that allows files to be accessed. The default 
is to allow access to files that are readable by 
“others.” 

• Mode of user-space modules – configures a file 
mode mask that allows user-space modules to be 
executed. The default is to allow execution of 
user-space modules that are executable by 
“user.” The setuid and setgid bits are also 
required for user-space modules. 

• Mode of external CGI modules – configures a 
file mode mask that allows external CGI 
modules to be executed. The default is to allow 
external CGI modules to be executed if any 
execute bit is set. Execution of external CGI 
modules requires the kernel to be built with that 
option enabled (see above). 

• Enable input and output packet delay timers – 
how long to delay packets in the network layer. 
The default value is not to delay packets. 

• Disable extra sk_buff copy operations – 
whether to use sk_buff copy operations for 
multi-fragment network buffers. The default is to 
use the old mechanism, which copies the buffer. 

Server logs are generated in binary format. TUX’s 
designers feel that writing logs in a binary format 
saves I/O bandwidth and disk space over writing 
human-readable logs in W3C ASCII format. Each log 

record contains all information that can be referenced 
from an http_req_t struct. 

Worker threads share a common ring buffer for 
writing log entries. The entries are padded to cache 
line boundaries, ensuring no false cache line sharing 
between threads on separate CPUs. A separate thread 
flushes log buffers every second or when 95% full. If 
the buffer fills entirely, worker threads block until 
existing log data is written to disk. These limits are 
compile-time constants, and cannot be changed 
during server operation. 

2.3 User-level access to the kernel’s HTTP 
layer 

User processes drive TUX servers. The TUX patch 
adds a new system call, http(), which provides an 
interface between user-level activities and kernel-
provided network functions. User processes identify 
themselves as web service threads, and then use the 
http() system call as an up-call mechanism to 
accept work from the kernel. These threads also act 
as the main listener threads for scheduling work 
within TUX. 

At this time there doesn’t appear to be any access 
control logic built into this system call. 

The caller specifies one of the following actions: 

Startup or shutdown – start or stop web services 
exported via the TUX server in the kernel. 

Register or unregister modules – add and remove 
kernel modules from the list of available in-kernel 
dynamic content generation modules. 

Start or stop listener threads – start another listener 
thread or stop an existing listener thread, including 
self. 

Set date in outgoing headers – set the text-format 
date that appears in the Date: header in outgoing 
responses. 

Pass through the thread’s housekeeping event loop – 
check work queues, then sleep until something 
interesting happens. This allows http() to function 
as an up-call to pass work from the kernel up to the 
user-level. 

Finish a request – write a log entry if necessary and 
make ready for the next event. 

Prime the cache – be sure the requested object is in 
the cache. This schedules a read operation, if 
necessary. 
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Read an object’s data – read data from an object 
represented by a URL into a user-level address space. 

Send an object’s data to a client – transmit data from 
an object represented by a URL to a client. 
typedef struct user_req_s { 
 int http_version; 
 int http_method; 
 int sock; 
 int bytes_sent; 
 int http_status; 
 unsigned int client_host; 
 unsigned int objectlen; 
 char query[MAX_URI_LEN]; 
 char *object_addr; 
 char objectname[MAX_URI_LEN]; 
 int module_index; 
 char 
modulename[MAX_MODULENAME_LEN]; 
 char post_data[MAX_POST_DATA]; 
 char new_date[DATE_LEN]; 
 
 int cookies_len; 
 char cookies[MAX_COOKIE_LEN]; 
 
 int event; 
 int thread_nr; 
 void *id; 
 void *private; 
} user_req_t; 

Figure 1. User API request object. 

This structure is exposed to user-level applications, 
and is one argument of the http() system call. The 
structure passes information into the system call, and 
also acts as a buffer for return values. 

2.4 Availability and code readiness 

TUX is available as a patch to Linux kernel version 
2.4.0-test8, however the patch doesn’t apply directly 
to this kernel version. The patch applies to a variant 
of a pre-release version of 2.4.0-test8 that Molnar 
was working on when he generated this patch. We 
applied the patch to 2.4.0-test8 and modified the 
net/core/dev.c file by hand to compile the kernel. 

The TUX patch contains optimizations to some 
network device drivers that increases buffer size, 
fine-tunes PCI bus management and error-checking, 
aligns important data structures to first-level CPU 
cache line boundaries, and provides instruction-level 
locking for better SMP behavior. These changes are 
not specific to TUX’s functionality. 

Support for Intel 32-bit processors is obvious in the 
patch. It is not clear whether TUX has been tested or 
runs on other Linux-supported hardware platforms. 

TUX is not feature-complete at the time of this 
writing. Support is incomplete for virtual hosting, 
response headers that provide information for 

efficient proxy caching, and byte range transfers. In 
addition, because it applies only to development 
versions of the Linux kernel, we surmise that it has 
not reached production-readiness. 

TUX is available from Red Hat as part of their 
Enterprise 7.0 distribution. The patch, with a few 
minor changes, has been incorporated into the kernel 
provided with 7.0, and now includes documentation 
in SGML format, and all the user-level pieces. It is 
Red Hat’s usual policy to include any patches they 
make to the kernel source with the distribution. 

You can find information on the TUX web server, 
including documentation and the source code for the 
user-level pieces here: 

http://www.redhat.com/products/software/

linux/tux/ 

3. Accelerating Static Content 
Copying data and calculating checksums on outgoing 
network packets are possibly the two most expensive 
operations in serving static web content already in 
memory. A typical method to reduce these expenses 
is to cache outgoing responses on the server in the 
hope that another client will request the same object 
again soon. 

To keep cached checksum values valid, data must be 
cached in kernel network buffers (known in Linux as 
sk_buffs) rather than as file system data or in some 
application level cache. TUX accomplishes this by 
adding references to cached data to the kernel data 
structures that represent in-core inodes. 

3.1 Managing network buffer fragmentation 
and reuse 

The Linux kernel uses sk_buff structures to manage 
data that is going to and from network devices. Metz 
discusses the differences between BSD-style mbufs 
and Linux sk_buffs [7]. 

The TUX patch improves the ability of the Linux 
networking layer to manage dynamically changing 
sk_buffs. Hagino documents several mbuf 
fragmentation issues he found while implementing 
IPv6 and IPsec on 4.4BSD [6]. Generally these 
buffers become fragmented due to sophisticated 
protocol processing, which requires unpredictable 
changes to a buffer’s length while it is being prepared 
for transport. 
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Molnar introduces a new data structure, called 
skb_frag_t, to manage buffer fragmentation and 
allow scatter/gather I/O using sk_buffs. 
struct skb_frag_struct { 
 unsigned int csum; 
 int size; 
 struct page *page; 
 int page_offset; 
 
 void (*frag_done) 
  (struct sk_buff *skb, 
  skb_frag_t *frag); 
 void *data; 
 void *private; 
}; 

Figure 2. Data type for managing buffer fragments. 

Every sk_buff now points to up to four buffer 
fragments. Each fragment can be as large as the 
system page size (4096 bytes on Intel processors). 
The checksum for each fragment is maintained 
independently, so the server can reuse fragments 
without recomputing the checksum of each fragment. 

This data structure refers to cached checksum data: 
struct csumcache_struct { 
 int size; 
 int packet_size; 
 skb_frag_t *array; 
}; 

Figure 3. Simplified checksum cache object 

The size field contains the number of packets in the 
fragment array pointed to by the array field. A 
csumcache_struct can point to an arbitrary 
number of buffer fragments, unlike a normal 
sk_buff, thus allowing efficient manipulation of the 
length and contents of arbitrarily complex network 
buffers, similar to aggregates in IO-Lite [12]. 

This also allows portions of a response to be cached 
and checksummed independently. When constructing 
a response to a client request, the server need only 
pull together previously cached portions and add their 
checksums. Scatter/gather I/O obviates an additional 
copy operation. 

TUX maintains response headers and server-side 
include data in separate buffer fragments. Processing 
a server-side include splits a single fragment into 
three. Otherwise file data fragments are up to a page 
(4096 bytes on ia32) in length. This means buffer 
fragments can pull file data directly out of the page 
cache without an extra copy operation. 

3.2 Linking URLs to cached data 

A URL object is created in lookup_urlo() to bind 
an in-core inode to data cached in the checksum 

cache. There is no separate URL object cache; TUX 
looks up URL objects by searching the directory 
entry cache for appropriately named file objects. 

The directory entry cache is managed via a hash table 
whose size is determined by the physical memory 
size of the hardware where Linux is running. 
Generally entries in the cache are not reclaimed – the 
cache is allowed to grow while there is still free 
memory. As memory becomes constrained, the 
system page allocator invokes a cache pruning 
operation that removes least recently used entries 
from the directory entry cache. Pruning a directory 
entry can also remove an in-core inode and any 
related data in the page cache. 
struct urlobject_struct { 
 csumcache_t *csumc; 
 struct inode *inode; 
 atomic_t users; 
 struct list_head 
  secondary_pending; 
 int header_len; 
 int body_len; 
 int filelen; 
 int SSI; 
 tcapi_template_t *tcapi; 
 atomic_t csumcs_created; 
 struct address_space_operations 
  *real_aops; 
}; 

Figure 4. Kernel-level cache object. 

The tcapi field identifies a dynamic trusted module 
by defining its entry points and properties. HTTPAPI 
templates are described later in this report. 

Linux uses an address_space structure to denote 
the set of mappings between an inode’s data pages 
and one or more process address spaces. This 
structure also contains a vector of virtual functions 
for moving an inode’s data into and out of the 
system’s page cache. These functions include 
readpage, writepage, sync_page, 
prepare_write, commit_write, and bmap. 

Address-space operations are replaced for inodes that 
represent cached web server objects. The old 
operations vector is maintained in the URL object in 
the real_aops field. The old operations vector is 
restored when TUX removes its last reference to an 
inode. 

The new virtual functions act as a wrapper around the 
original address space map operations. For the most 
part, the wrapper functions perform only error 
checking and argument marshalling. 

The readpage wrapper is more sophisticated, 
however. It directly links the checksum cache to the 
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inode’s data in the page cache. Whenever a read 
request occurs, the relevant data pages are mapped 
into the kernel’s address space and copied into the 
checksum cache data structure (see Figure 3) 
associated with the inode via its URL object. 

In summary, TUX provides a new set of data 
structures that allow it to cache partial and complete 
responses, with checksum, in the kernel’s network 
layer. Cached web objects are managed as a part of 
the kernel’s LRU directory entry cache. 

4. Accelerating Dynamic Content 
TUX accelerates dynamic content generation by 
providing two new interfaces. The user-level 
interface, the new http() system call, is described 
earlier. This section describes the kernel-level 
interface. 

4.1 The HTTP dynamic API 

TUX provides an interface, called HTTPAPI that 
supports the generation of dynamic content by trusted 
kernel modules. This interface is described in the file 
net/http/HTTPAPI.txt, and is summarized here. This 
dynamic API is intended for simple, oft-used requests 
with few security issues. Complex and slow requests 
should be handled in user-space. 

These modules are invoked using a special URL of 
the form: 

http://server.your.domain/module?argument 

where module is the unique name of the dynamic 
module to be invoked, and argument is a text 
argument passed by the server to the module. 

Every HTTP trusted dynamic module defines a 
tcapi template, which defines entry points and 
module properties. The template looks like this: 
struct tcapi_template_s { 
 char *vfs_name; 
 char *version; 
 int (*query) (http_req_t *req); 
 int (*send_reply) 
  (http_req_t *req); 
 int (*log) (http_req_t *req, 
  char *log_buffer); 
 void (*finish) (http_req_t *req); 
}; 

Figure 5. Dynamic module API template. 

The vfs_name field refers to the unique name of the 
module. The version field refers to a string that 
names the version of the interface supported by the 
module, usually “TUX 1.0”. 

The other four fields are virtual functions 
implemented in each module. The server invokes the 
query function to handle a new request from a client. 
Modules can return a filename in the http_req_t 
struct that is then transmitted to the requesting client 
by the server. Otherwise, if the send_reply function 
pointer is not NULL, the server invokes it to generate 
a response. Module-specific log messages can be 
generated by the log function. When the server 
closes a connection, it invokes the finish function. 

The interface makes available several other structures 
for use by module programmers. These are opaque 
descriptors that refer to files, URIs, pages, file system 
directory entries, and the server’s document root. 

A limited system-call-like API is also provided to 
simplify module programming. This allows modules 
to safely open, close, look up, read, write, and mmap 
files under the server’s document root, send buffers 
or files directly to clients, retrieve file sizes and 
modification times, allocate and free “heap” memory, 
manipulate mutexes, exec new threads, sleep without 
blocking the kernel, or retrieve the client’s IP 
address. 

When cloning a thread to run a CGI, the kernel sets 
the thread’s privileges to be nothing. 

A separate interface, called http_miss_req, is 
available to trusted modules that wish to initiate an 
I/O operation to fill a cache slot. This can pre-fetch 
an object, or can schedule an asynchronous read if a 
cache look-up operation fails. When the I/O 
operation completes, an I/O thread queues the request 
onto one of the requesting thread’s output queues, 
and wakes the thread. 

Examples of trusted dynamic modules are included in 
the patch. These are the CAD and CAD2 modules 
that implement the CAD dynamic application 
required in the SPECweb99 benchmark. These 
applications are normally implemented in Perl, but 
SPECweb99 rules allow these applications to be 
rewritten. It is likely that simply rewriting such a 
script in C has an enormous impact on benchmark 
performance. 

If a trusted module causes a program interrupt, the 
kernel stops the interrupting thread and prints a 
diagnostic on the system console. This is referred to 
as an “oops.” Generally a system can continue 
functioning after this occurs, but sometimes a thread 
may have acquired a lock or other system resource 
that will cause the system eventually to crash or 
otherwise melt down. 
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In summary, HTTPAPI is a kernel module 
programming interface that supports the generation 
of dynamic content by trusted kernel modules. It 
provides a miniature system call-like interface that 
can fork, exec, manage file data, populate the web 
object cache asynchronously, or manage network 
connections. A kernel module that uses the HTTPAPI 
interface invokes external CGI scripts. 

5. Threading Model 
TUX uses a scheme similar to the FLASH web server 
to handle cached requests quickly via an event-driven 
mechanism, while managing any necessary disk I/O 
asynchronously in separate threads [8]. 

5.1 I/O threads 

There are two thread pools. The first pool of threads 
is referred to as the IO, or cache-miss thread pool. 
These threads populate the cache asynchronously at 
the behest of listener threads. The number of cache-
miss threads is a compile-time constant, currently 10 
(a better number might be a multiple of the number 
of CPUs configured in the system). All cache-miss 
threads are created when the web server is initialized 
(system restart). There is no provision for starting or 
stopping these threads during normal operation, 
although they do respect signals. 

Cache fill requests are queued onto a single global 
list via HTTPAPI’s http_miss_req() interface. All 
cache-miss threads try to pull work off this list until it 
is empty, at which point they sleep. Queuing items 
onto this list causes a single sleeping cache-miss 
thread to be awakened (wake-one semantics avoid a 
thundering herd). 

TUX is supposed to balance load dynamically among 
IO threads, based on the number of requests they 
have pending. We haven’t found logic to do this, 
possibly NYI. 

There are two types of cache miss: a primary cache 
miss is one that TUX can fill by reading the 
requested object directly into its web object cache; a 
secondary cache miss is one where TUX has 
identified the request as one that it can’t fulfill itself, 
so it passes the request to its backing server via 
socket redirection. 

5.2 Fast threads 

The other thread pool is referred to as fast, or listener 
threads. These threads handle responses that are 
already cached. There can be at most 16 such threads. 

Fast threads are created when an otherwise normal 
user-level process invokes the http() system call 
and identifies itself as a TUX thread. A per-thread 
context area is anchored in the process’s task 
structure. The thread field points back to the task 
struct where this object is anchored. The 
threadinfo objects are statically allocated in a 
contiguous array. The cpu field contains an integer 
that represents the number of the preferred CPU for 
this thread. 

The userspace_req field is filled in with a user-
space request that will be processed by this thread. 

Becoming a fast thread relies on the used 

semaphore to prevent race conditions. A started 
thread (that is, one that has become TUX thread) 
contains a 1 in the started field. When stopping, a 
thread waits for connections to finish by adding itself 
to the wait_stop waitqueue via the stop field. 
struct http_threadinfo 
{ 
 http_req_t *userspace_req; 
 int started; 
 struct semaphore used; 
 struct task_struct *thread; 
 wait_queue_t wait_event 
  [CONFIG_HTTP_NUMSOCKETS]; 
 wait_queue_t stop; 
 int pid; 
 
 int nr_requests; 
 struct list_head all_requests; 
 
 int nr_free_requests; 
 spinlock_t free_requests_lock; 
 struct list_head free_requests; 
 
 spinlock_t input_lock; 
 struct list_head input_pending; 
 
 spinlock_t userspace_lock; 
 struct list_head 
  userspace_pending; 
 
 spinlock_t output_lock; 
 struct list_head output_pending; 
 
 spinlock_t redirect_lock; 
 struct list_head 
  redirect_pending; 
 
 struct list_head finish_pending; 
 
 struct socket *listen 
  [CONFIG_HTTP_NUMSOCKETS]; 
 int listen_cloned 
  [CONFIG_HTTP_NUMSOCKETS]; 
 
 char * output_buffer; 
 int cpu; 
 unsigned int __padding[16]; 
}; 

Figure 6. TUX per-thread context structure. 
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Each thread can listen on up to four sockets at a time. 
Listener socket structures are anchored in the listen 
field. Multiple threads listening on the same socket 
set the appropriate entry in listen_cloned to 
prevent multiple closes of the same socket upon 
shutdown. 

The output_buffer field anchors a 256-page 
buffer that is only used by the CAD module in the 
current version of TUX. The buffer will likely be 
used for sendfile-style requests. 

The lists and locks manage request flow in TUX. A 
detailed discussion follows in the next section. 

There are a relatively large number of locks per 
thread. This is an attempt at reducing lock contention 
on SMP hardware. It’s not clear whether the design 
started with a small number of locks, and observed 
contention prompted an increase, or whether the 
design included so many locks at the outset. 

In summary, user-level threads call into the kernel to 
pick up new work. If they can’t respond to a request 
immediately with a cached response, they queue the 
request to be handled by the I/O threads. 

6. Event Model 
In this section we describe how TUX achieves a true 
network-event driven dispatching model. 

Linux sockets each have their own waitqueue. 
Threads can use a socket’s wait queue to wait for 
events occurring on that socket; more than one thread 
can wait for a socket at any given time. 

Threads waiting on a listener socket are queued on 
the socket’s waitqueue. These threads have put 
themselves to sleep, yielding to other threads. When 
the network layer detects a new connection request 
for the listener, it will awaken any threads on the 
listener socket’s wait queue via a socket call-back. 

6.1 Socket callbacks 

A socket callback is a virtual function that the kernel 
network stack invokes to signal a socket state change 
to higher-level modules. TCP sockets generally use 
the default socket callbacks that wake sleeping 
processes and generate appropriate user-level POSIX 
signals. 

• sock_def_wakeup() – signals a generic socket 
state change. 

• sock_def_error_report() – signals that 
some in-band or out-of-band error occurred on 
the socket. 

• sock_def_readable() – signals that data is 
available to be read from the socket. 

• sock_def_write_space() – signals that 
buffer space is available for more write 
operations. 

• sock_def_destruct() – invoked to release 
any protocol-specific storage before a sock data 
structure is freed. 

Threads normally sleep on waitqueues while waiting 
for something interesting to happen. When work on 
an existing connection arrives, the kernel removes the 
threads from the associated socket’s wait queue and 
the default readable callback (sock_def_readable 
for regular TCP sockets) is invoked. 

For sockets that TUX uses, the socket callbacks are 
replaced with new functions implemented by TUX. 
The old function pointers are saved in case the socket 
is redirected, in which case the old function pointers 
are restored before the redirection completes. 

idle_event() is invoked from these callbacks 
when a socket changes state. It adds incoming 
requests to a thread’s input queue. In this way, the 
network layer drives the web server’s work by 
waking up its threads whenever something needs to 
be done. Molnar inserted idle_event() into both 
the default socket callbacks and into the TUX socket 
callbacks. We’re not certain why it is needed in both 
places. 

TUX bypasses normal accept() processing. Work 
is moved directly from the listener socket’s queue to 
the thread’s input request queue. Comments in the 
code suggest there is some inefficiency in the current 
Linux accept() implementation that is avoided by 
TUX’s new connection accept logic. 

6.2 Redirecting connections to the backing 
server 

The main event loop for fast threads visits the 
redirection queue during each pass. Thus each fast 
thread is responsible for handling its own redirection 
requests. 

Tux places the socket to be handed off directly onto 
the backing server’s accept queue. It uses the backing 
server’s port number to look up its listen queue. 
Currently, the backing server must run on the same 
host with TUX. 



 TUX web server 

 - 9 - 

TUX replaces a socket’s callback functions with 
functions that are specific to the TUX HTTP layer. If 
a socket is redirected, these functions are replaced 
again with the normal TCP layer callback functions. 

6.3 Request scheduling 

Each thread manages several queues of requests. 
Request structures are more than half a page, so when 
a request structure is released, it is saved on a per-
thread free list and re-used. 

Each thread has seven scheduling queues, anchored 
in the thread’s threadinfo object described in the 
previous section. 

• All requests – Whenever a new request structure 
is allocated, it goes on this list. In-use request 
structures are always on this queue; they may or 
may not be on one of the other work queues. 

• Free requests – When a request is finished, the 
request structure can be re-used. Reusable 
structures are placed on this list; in-use request 
structures never appear in this list. 

• Input requests – Requests waiting for incoming 
work from a client are placed on this list. When a 
connection is accepted, accept_requests() 
creates a new request and adds it to the input 
queue. When a socket state change occurs on a 
HTTP connection, idle_event() adds the 
request associated with the socket to this queue. 

• User space requests – User-level work is queued 
here by the http() system call. 

• Output requests – When a thread requests that a 
response be returned to a client, that request is 
queued on this list. 

• Redirection requests – When TUX decides it 
cannot handle a request it sets the request’s 
redirect_secondary field, causing the event 
scheduler to queue the request on this list. 

• Finishing – This queue does not appear to be 
used. 

When a user-level TUX thread calls into the kernel 
specifying the HTTP_ACTION_EVENTLOOP 
action, the thread enters its main event loop. The 
event loop tries to accept new connections by calling 
accept_requests(), checks for work on the 
thread’s five active request queues, then checks for 
pending signals. The loop finishes by checking if 
other parts of the kernel want to preempt the thread. 
If the thread isn’t preempted, it will loop to pick up 

more work; otherwise it invokes the scheduler so 
other threads can run. If there is no more work, it will 
sleep. 

In several areas, TUX tries to fulfill a client request 
as soon as possible. During accept processing in 
accept_requests(), TUX attempts to respond 
immediately to client requests which have already 
arrived in their entirety. In addition, when parsing 
headers, TUX can immediately redirect or queue an 
output request in response to a client request. 

In summary, all HTTP sockets are associated with a 
thread when they are created via TUX’s special 
connection accept logic. Incoming work on a socket 
is queued onto a thread’s input request queue by 
special socket callbacks invoked from the kernel’s 
network layer. When the thread passes through its 
main event loop, it parses the input request and 
requeues the request according to the work that needs 
to be done. 

7. VM Modifications 
Some modifications to the kernel’s memory 
management functions were necessary to increase the 
amount of real and virtual memory available to TUX. 
Web serving can be a memory-intensive operation. 

7.1 Size of kernel address space increased 

Normally, the Linux kernel shares the top 1G of 
process address space with all processes on the 
system. On systems with 4G of physical 
addressability, this provides 3G address spaces for 
each process. The division of kernel space and 
address space is controlled by a compile-time 
constant. The TUX patch lowers this constant to 
increase the kernel’s address space size to 3G. This 
allows more cached data to be addressable inside the 
kernel. 

7.2 System cache reaping 

Molnar added several changes to the directory entry 
cache, the quota cache, and the inode cache logic to 
make them more selective about where and when to 
recycle cache items. The authors do not believe these 
changes are related to the operation of TUX. 

An additional interface was added to the page cache 
to allow TUX to start flushing pages for files that are 
very large. This is used to maintain a cap on the size 
of cached files, and also for flushing log data. 

TUX wraps the kernel’s generic memory allocator in 
a function called http_kmalloc() which is used 
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internally by TUX and trusted dynamic modules. In 
addition to allocating memory, this function recovers 
from short-term memory shortages by directly 
pruning the inode and directory entry caches. This is 
special behavior copied from logic that runs in the 
system swap daemon and the system page allocator. 

As you may recall, the directory entry cache is used 
to cache web objects. By pressuring this cache when 
http_kmalloc() discovers a memory shortage, 
TUX is controlling the web object cache size with 
direct feedback. 

7.3 Atomic directory entry cache lookups 

The directory entry cache normally populates its own 
cache when an entry lookup request fails. TUX adds 
an option to the directory entry lookup interface to 
request a lookup operation that examines the cache 
and returns if no matching entry is found. This way 
TUX won’t block if it uses the directory entry cache, 
and can populate the missing cache item itself using 
its own asynchronous I/O mechanism. 

User-level applications also get access to this new 
style of lookup. A new option for open(), 
O_ATOMICLOOKUP, specifies that the lookup 
operation should not block. 

7.4 Other miscellaneous changes 

In this subsection we list several minor changes 
included with the TUX patch. These are changes that 
improve system scalability and performance in 
general. 

The interface that manages inodes with zero 
reference counts, known as iput(), is now split into 
two interfaces. One places a reusable inode at front of 
the inode cache’s reuse queue, the other at the tail of 
the queue. This allows parts of the kernel to specify 
that an inode should be recycled immediately, for 
example, when the file it represented is deleted, to 
save room in the inode cache for other inodes that 
represent files that may be reused in the near future. 

The kernel’s mechanism to put information into the 
system log and onto the system console is printk(). 
The TUX patch increases the size of the printk log 
buffer by eight times. This is intended as a debugging 
aid, but will also help system scalability as faster 
systems generate log data at a higher rate. 

In Linux’s page cache and disk quota cache, 
reclamation goals control how many pages and quota 
structures are reclaimed when system memory is 
exhausted. The TUX patch raises these goals so that 

more pages and quota structures are reclaimed during 
each reclamation pass through these caches. 

Linux divides physical memory into several zones, 
such as DMA-only pages, or pages that are above 4G. 
Each zone is balanced on a priority basis when 
system memory is exhausted. The DMA zone is 
smallest, yet is important for I/O requests, so it is 
balanced carefully. The TUX patch eliminates the 
zone balancing priorities for memory above 4G. This 
probably has few effects on the zone-balancing 
algorithm. 

Active disk requests in the Linux kernel are queued 
on an asynchronous request queue. Periodically, 
Linux will run down this queue to force the disk 
devices to begin working on outstanding requests. 
The TUX patch makes the Linux scheduler more 
aggressive about flushing the active disk request 
queue. Threads invoke the schedule() function 
when putting themselves to sleep. This change causes 
most calls to schedule() to flush the queue of 
asynchronous disk requests. The old scheduler never 
touched the active disk request queue. 

To improve the efficiency of sending packets out onto 
the network, the network layer must wait 
appropriately for the outgoing message to be 
complete. The MSG_NO_PUSH option, added by the 
TUX patch, can cause the network layer to hold onto 
an outgoing packet rather than aggressively push it 
onto the network. This allows packets to be built in 
stages, and it allows separate packets to be sent 
together in a single network write operation. 

The Linux network layer uses a hash table to manage 
incoming TCP connections that are in early stages of 
connection. The TUX patch increases the size of this 
hash table eight-fold to help reduce the length of the 
hash chains in this table when a large number of 
incoming connections arrive concurrently. 

The TUX patch also increases the maximum backlog 
of unprocessed incoming network packets by three 
orders of magnitude. Up to 300,000 packets can wait 
for processing before the protocol-independent 
networking logic begins dropping packets. 

TUX raises the default listen backlog for large 
machines from 1024 to 4096. 

In summary, the TUX patch modifies basic kernel 
VM functions to facilitate its use (reuse) of the 
directory entry cache. It also increases the size of the 
kernel’s portion of the virtual address space. 
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8. Conclusions and Future Efforts 
The TUX web server gains considerable performance 
and scalability improvements by moving oft-used 
web server functionality closer to the kernel’s 
networking stack. By driving web service directly 
with incoming network events, and by keeping 
cached data in the network layer, TUX can respond to 
web clients faster than more traditional web servers. 

TUX supports some advanced features, such as 
server-side includes, a dynamic content API in the 
kernel, and SMP scalability. However, TUX is still 
missing functionality. It doesn’t work well with proxy 
caches, lacks support for virtual hosting, and is 
missing some needed security checking in the user-
level interface. 

Some of TUX’s architectural ideas are significant and 
can be directly useful in other operating systems. 
However, the specific design of the Linux networking 
stack (i.e. socket callbacks) allows an event-driven 
HTTP handler in a way that may be less portable than 
other design concepts. 

TUX is a large and complex set of modifications to 
the Linux kernel. In order to gauge the effectiveness 
of some of its design features, the TUX patch should 
be broken apart into smaller parts that can be studied 
more scientifically. For instance, careful analysis of 
network buffer manipulations might demonstrate 
areas for improvement, or prove the method is 
valuable for other types of network servers. 

Rigorous security analysis of the http() system call 
and the new HTTPAPI is necessary before 
determining that such an architecture is appropriate 
for high-performance and secure installations. 

Finally, a lock contention study might show that TUX 
performs well with fewer locks. Linux spin locks are 
designed for low instruction count in the case where 
the lock isn’t already held. However, extra locks 
result in cache line sharing in SMP configurations, 
which slows memory traffic for all work on the 
system. 

8.1 Acknowledgements 

Special thanks go to Peter Honeyman and Andy 
Adamson at U-M, and to Will Morris at iPlanet. 
Special thanks to Niels Provos for ideas and 
encouragement. 

9. References 
1. W. Richard Stevens, Advanced Programming in the 

UNIX Environment, Addison-Wesley Publishing Co., 
Copyright 1992. ISBN 0-201-56317-7. 

2. Ingo Molnar, “TUX web server 1.0,” 
people.redhat.com/mingo/tux-2.4.0-test8-

C4 . 

3. “Second Quarter 2000 SPECweb99 Results,” 
www.spec.org/osg/web99/results/res2000q2/ 

4. Ingo Molnar, “Answers from Planet TUX: Ingo 
Molnar Responds,” Slashdot, July 20,2000, 
slashdot.org/interviews/00/07/20/ 

1440204.shtml . 

5. Apache Server, The Apache Software Foundation. 
www.apache.org 

6. Jun-ichiro itojun Hagino, “Mbuf Issues in 4.4BSD 
IPv6 Support—Experiences from KAME IPv6/IPsec 
Implementation,” Proceedings of the FREENIX track, 
2000 USENIX Technical Conference, June 2000. 

7. Craig Metz, “Porting Kernel Code to Four BSDs and 
Linux,” Proceedings of the FREENIX track, 1999 
USENIX Technical Conference, June 1999. 

8. Vivek S. Pai, Peter Druschel, Willy Zwaenepoel, 
“Flash: An Efficient and Portable Web Server,” 
Proceedings of the 1999 USENIX Technical Conference, 
June 1999. 

9. Internet Information Services 5.0 Programmer’s 
Guide: ISAPI Reference, MSDN Online Library, 
Copyright 2000, Microsoft Corporation. 

10. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, 
T. Berners-Lee, Hypertext Transfer Protocol -- 
HTTP/1.1, RFC 2616, June 1999. 

11. Arjan van de Ven, “khttpd: Linux HTTP Accelerator,” 
http://www.fenrus.demon.nl/ 

12. V. S. Pai, P. Druschel, W. Zwaenepoel, “IO-Lite: A 
unified I/O buffering and caching system,” ACM 
Transactions on Computer Systems, Vol. 18, No. 1, 
pp.37-66, February 2000. 


	An analysis of the TUX web server

