
NFSv4.1 Sessions
Design and Linux Server
Implementation Experiences

Jonathan Bauman
Center for Information Technology Integration
University of Michigan, Ann Arbor
http://citi.umich.edu

Sessions Overview

✽ Correctness
✽ Exactly Once Semantics
✽ Explicit negotiation of bounds

✽ Clients make best use of available resources

✽ 1 client, many sessions
✽ /usr/bin (read only, no cache, many small requests)

✽ /home (read/write, cache, fewer, larger requests)

✽ Client-initiated back channel
✽ Eliminates firewall woes

✽ Can share connection, no need to keep alive

Example of 4.0 Complexity

The server has previously recorded a confirmed { u, x, c, l, s }
record such that v != u, l may or may not equal k, and recorded
an unconfirmed { w, x, d, m, t } record such that c != d, t != s, m
may or may not equal k, m may or may not equal l, and k may or
may not equal l. Whether w == v or w != v makes no difference.
The server simply removes the unconfirmed { w, x, d, m, t }
record and replaces it with an unconfirmed { v, x, e, k, r }
record, such that e != d, e != c, r != t, r != s.

The server returns { e, r }.

The server awaits confirmation of { e, k } via
SETCLIENTID_CONFIRM { e, r }.

SETCLIENTID implementation discussion from RFC 3530

Sessions Overview (continued)

✽ Simplicity
✽ CREATECLIENTID, CREATESESSION

✽ Eliminate callback information

✽ Duplicate Request Cache
✽ Explicit part of protocol

✽ New metadata eases implementation; RPC independent

✽ See implementation discussion

✽ Support for RDMA
✽ Reduce CPU overhead
✽ Increase throughput
✽ See NFS/RDMA talks for more

Draft Issues

✽ False Starts
✽ Channels & Client/Session Relationship
✽ Chaining

✽ Open Issues
✽ Lifetime of client state
✽ Management of RDMA-specific parameters

✽ Future Directions
✽ “Smarter” clients & servers
✽ Back channel implementation

Channels

✽ Originally, sessionid ⋲ clientid;
1 session, many channels

✽ Direct correspondence to transport instance
✽ Back & operations channels are similar
✽ Same BINDCHANNEL operation

✽ Protocol Layering Violation
✽ ULP should be insulated from transport
✽ Killer use case: Linux RPC auto-reconnects
✽ Lesson: layering violations & LLP assumptions

Channels (continued)

✽ Now clientid:sessionid is 1:N
✽ Per-channel control replaced by per-session
✽ Sessions can be accessed by any connection

✽ Facilitates trunking, failover

✽ No layering violations on forward channel

✽ Back channel still bound to transport
✽ Only way to achieve client-initiated channel
✽ Layering violation, not required feature
✽ Not yet implemented, possibly more to learn

Chaining Example

COMPOUND
OPERATION 1

OPERATION k

COMPOUND 1
CHAIN: BEGIN
OPERATION 1

OPERATION i

COMPOUND m
CHAIN: CONTINUE
OPERATION i + 1

OPERATION j

COMPOUND n
CHAIN: END
OPERATION j + 1

OPERATION k

NFS v4.0
Allows COMPOUND procedures to contain an
arbitrary number of operations

NFS v4.1 Sessions
Since the maximum size of a COMPOUND is negotiated,
arbitrarily large compounds are not allowed. Instead
COMPOUNDS are “chained” together to preserve state

Chaining

✽ Max request size limits COMPOUND
✽ 4.0 places no limit on size or # of operations

✽ File handles live in COMPOUND scope

✽ Originally sessions proposed chaining facility
✽ Preserve COMPOUND scope across requests

✽ Chain flags in SEQUENCE

✽ Chaining eliminated
✽ Ordering issues across connections problematic

✽ Annoying to implement and of dubious value

✽ Large COMPOUNDS on 4.0 get errors anyway

✽ Sessions can still be tailored for large COMPOUNDS

Implementation Challenges

✽ Constantly changing specification
✽ Problem for me, but not for you
✽ Time implementing dead-end concepts

✽ Fast pace of Linux kernel development
✽ Difficulty merging changes from 4.0 development

✽ Lack of packet analysis tools
✽ SEQUENCE operation

✽ Unlike other v4 operations
✽ Requires somewhat special handling

✽ Duplicate Request Cache

Duplicate Request Cache

✽ No real DRC in 4.0; Compare to v3.0
(on Linux)
✽ Global scope

✽ All client replies saved in same pool

✽ Unfair to less busy clients

✽ Small
✽ Unlikely to retain replies long enough
✽ No strong semantics govern cache eviction

✽ General DRC Problems
✽ Nonstandard and undocumented
✽ Difficult to identify replay with IP & XID

4.1 Sessions Cache Principles

✽ Actual part of the protocol
✽ Clients can depend on behavior
✽ Increases reliability and interoperability

✽ Replies cached at session scope
✽ Maximum number of concurrent requests &

maximum sizes negotiated

✽ Cache access and entry retirement
✽ Replays unambiguously identified
✽ New identifiers obviate caching of request data
✽ Entries retained until explicit client overwrite

DRC Initial Design

✽ Statically allocated buffers based on limits
negotiated at session creation

✽ How to save reply?
✽ Tried to provide own buffers to RPC, no can do
✽ Start simple, copy reply before sending

✽ Killer problem: can’t predict response size
✽ If reply is too large, it can’t be saved in cache
✽ Must not do non-idempotent non-cacheable ops
✽ Operations with unbounded reply size: GETATTR,

LOCK, OPEN…

DRC Redesign

✽ No statically allocated reply buffers
✽ Add reference to XDR reply pages

✽ Tiny cache footprint
✽ No copies, modest increase in memory usage
✽ Layering? This is just one implementation;

Linux RPC is inexorably linked to NFS anyway
✽ 1 pernicious bug: RPC status pointer

✽ Large non-idempotent replies still a problem
✽ Truly hard to solve, given current operations
✽ In practice, not a problem at all (rsize,wsize)

DRC Structures

struct nfs4_session {
 /* other fields omitted */
 u32 se_maxreqsize;
 u32 se_maxrespsize;
 u32 se_maxreqs;
 struct nfs4_cache_entry *se_drc;
};

struct nfsd4_sequence {
 sessionid_t se_sessionid;
 u32 se_sequenceid;
 u32 se_slotid;
};

Session State SEQUENCE Arguments

0x00000000available0maxreqs - 1
⋯⋯⋯⋯

0xDECAFBADin-progress2861
0xBEEFBE10complete110

XDR ReplyStatusSequence IDSlot ID

DRC Fringe Benefit

✽ 4.0 Bug: Operations that generate upcalls
✽ Execution is deferred & revisited (pseudo-drop)
✽ Partial reply state not saved
✽ Non-idempotent operations may be repeated

✽ Sessions Solution
✽ When execution is deferred retain state in DRC
✽ Only additions are file handles & operation #
✽ Revisit triggers DRC hit, execution resumes

DRC Future

✽ Refinement, stress testing
✽ Compare performance to v3
✽ Quantify benefits over stateful operation

caching in 4.0

✽ Backport to v4.0
✽ No session scope, will use client scope
✽ No unique identifiers, must use IP, port & XID
✽ More work, but significant benefit over v3

Implementation Delights

✽ Draft changes made for better code
✽ DRC & RPC uncoupled
✽ SETCLIENTID & SETCLIENTID_CONFIRM

✽ Relatively little code
✽ CREATECLIENTID
✽ CREATESESSION
✽ DESTROYSESSION
✽ SEQUENCE (Duplicate Request Cache)

Conclusions

✽ Basic sessions additions are positive
✽ Reasonable to implement
✽ Definite improvements: correctness, simplicity

✽ Layering violations
✽ Avoid in protocol
✽ Can be leveraged in implementation

✽ Further additions require more
investigation
✽ Back channel
✽ RDMA

Questions & Other Issues

✽ Open Issues
✽ Lifetime of client state
✽ Management of RDMA-specific parameters

✽ Future Directions
✽ “Smarter” clients & servers
✽ Back channel implementation

✽ RDMA/Sessions Draft
✽ Under NFSv4 Drafts at IETF site
✽ http://ietf.org/internet-drafts/draft-ietf-nfsv4-sess-01.txt

