
1

This is a draft version of a forthcoming CITI Technical Report
Please do not circulate or cite this paper

Version 10/14/03 3:33:22 PM

Naming, Migration, and Replication in NFSv4

Jiaying Zhang
jiayingz@eecs.umich.edu

Peter Honeyman
honey@citi.umich.edu

Center for Information Technology Integration
University of Michigan

Ann Arbor

Abstract
In this paper, we propose the design of a global name
space for NFSv4 and mechanisms for transparent
migration and replication. By convention, any file or
directory name beginning with /nfs at a NFS client is
part of this shared global name space. File system
migration and replication are supported through DNS
resolution. Directory migration and replication are
provided by making use of FS_LOCATIONS
attribute. For mutable replication, server redirection
is utilized to provide concurency and consistency
during replica updates. Strong consistency is
guaranteed when the system is free of failures. In
case of network partition failures, two kinds of
consistency can be provided: one-copy serializability
and write serializability, which allow different
availabilities.

1. Introduction
The Network File System (NFS) [1, 2] is a popular
distributed file system developed by Sun
Microsystems in the early 1980s. The primary goal of
NFS was to give users at workstations transparent
access to files across a local area network (LAN).
Over its long history, the original goal has been
extended.

The current version of NFS, Version 3 (NFSv3), is
widely adopted, yet it has some troublesome
drawbacks. The NFSv3 protocol was designed for
an environment quite different than today’s:

• Computers were much less powerful.
• Operating systems were much less reliable.

• Access to remote computers was mostly limited
to LANs.

• The wide area network (WAN) known as the
Internet was still in its infancy.

• Popular security mechanisms were relatively
easy to exploit. For example, the security hole
reported by William E. Sommerfeld in 1987
[REF] allowed an impostor to gain unauthorized
access to an NFS file system by spoofing file
handles.

Today’s highly-connected world has led to
problems in using NFS over the Internet, where
security, performance, and interoperability are
critical. To address these difficulties, Version 4 of
NFS (NFSv4) [3] was designed. NFSv4 retains the
essential characteristics of previous versions of
NFS, but is designed to improve access and
performance over WANs. To help realize these
goals, this paper focuses on mechanisms that
facilitate wide area interoperation and access: a
global name space and support for transparent
migration and replication.†

Our work is also motivated by the need for easy
administration of the file system. In an environment
in which storage systems are becoming larger and
more complex, storage management plays a
prominent and increasing role and expense in system
administration. This makes administerability an
important goal in file system designs. The past

† We discuss transparency in Section 2.1, but for now
we use the term loosely.

2

twenty years has seen numerous research and
development efforts intended to facilitate file system
administration. For example, in AFS, volumes [28]
were developed to organize data within a storage
complex by breaking the association between
physical storage and the unit of migration and
replication. Because they are independent of the
physical configuration of the system, they provide a
degree of transparency in addressing, accessing, and
storing files. This also facilitates data movement and
optimization of existing storage. One of the outcomes
of the volumes abstraction is support for self-healing
in storage systems, an important goal in recovery-
oriented or autonomic computing [ROC ref,
autonomic ref].

The lack of transparent file relocation support makes
data movement among different NFS file systems a
cumbersome admistration task, and can disrupt the
ongoing work of users and applications while data is
distributed to new locations. Migration and
replication address this problem: our design allows
data to be created, copied, removed, and relocated
easily within NFSv4 without disrupting service to
clients. We also provide a framework for automatic
failover and load balancing, which are highly
desirable in the wide area environment.

Naming plays an important role in distributed file
systems. In wide area networking, several principles
guide the design of a distributed file system name
space. First, a global name space that provides a
common frame of reference is desirable. Second,
name space operations should scale well in the face
of wide or massive distribution. Third, transparent
migration and replication require location
independent naming.

We also pay special attention to replicating data.
There are two primary reasons for replicating data.
First, replicated data increase the reliability of a
system by allowing users and applications to continue
working after one replica crashes by simply
switching to another. Second, replication improves
performance by allowing access to distributed data
from local servers. This is especially significant in
allowing a distributed system to scale in size and
geographical area.

One of the primary challenges to data replication is
consistency across replicas. Although strong
consistency is ideal, the tradeoff between
performance, availability, and consistency must be
taken into consideration during the design of
replication systems.

In this paper, we propose a global name space for
NFSv4 file system that supports transparent

migration and replication. In particular, we adhere to
the above principles in our project design. The
remainder of this paper is organized as follows,
Section 2 introduces background material. Section 3
describes related work. Section 4 presents the design
of the system proposed in this paper. Section 5
discusses a prototype implementation. Section 6
evaluates the performance of the prototype
implementation. Section 7 discusses the outcome of
the project and outlines some issues to explore in the
future. Section 8 summarizes and concludes.

2. Background
This section provides a background of Distributed
File System design principles, useful for
understanding the material presented in later sections.

2.1 Distribution Transparency
Distribution transparency is defined as the abstract
concepts and mechanisms that make a distributed
system appear as if it were a single united system.
Ironically, transparency is really all about opacity,
i.e., a system is made transparent by concealing
properties derived from separation. There are several
forms of distribution transparency [6].

• Access Transparency: Hide differences in data
representation and how a resource is accessed.

• Location Transparency: Hide the location of a
resource.

• Migration Transparency: Hide that a resource
may move to another location.

• Relocation Transparency: Hide that a resource
may be moved to another location while in use.

• Replication Transparency: Hide that a resource
is replicated.

• Concurrency Transparency: Hide that a
resource may be shared by several competitive
users.

• Failure Transparency: Hide the failure and
recovery of a resource.

• Persistence Transparency: Hide whether a
resource is in memory or on disk.

Although distribution transparency is generally
preferable for any distributed system, there is a trade-
off between a high degree of transparency and system
performance.

2.2 Consistency Models
The main problem introduced by replication is
maintaining consistency: whenever a replica is
updated, that replica becomes different from the
others. To keep replicas consistent, we need to
propagate updates in such a way that temporary

3

inconsistencies are not noticed. However, doing so
may severely degrade performance, especially in
large-scale distributed systems. The problem is
simplified if consistency can be somewhat relaxed.

Most distributed file systems provide one of four
consistency models, listed below.

• One-copy serializability. Ideally, a file system
supporting transactional semantics would
implement one-copy serializability, which
requires that the execution of operations by
distinct clients be equivalent to a joint serial
execution of those operations on non-replicated
data items shared by the two processes [16].
One-copy serializability guarantees that a client
always reads the newest copy in the system.

• Write serializability. In many situations, it is
important only to guarantee that all write
operations are serialized. That is, all writes are
executed in the same order everywhere. This
guarantees the system will eventually enter a
consistent state. In this model, a client is not
guaranteed to read the most recent copy.

• Time bounded inconsistency. Many
applications can tolerate some degree of
inconsistency. In a time bounded inconsistency
model, a client may access an old version of data
if the update to the object was made in the bound
time. After the bound time, clients are
guaranteed to see the updated data. This
consistency model is often implemented in
systems using heartbeat messages to check data
consistency or to detect network partitions.

• Optimistic consistency. Some distributed file
systems adopt optimistic schemes to trade
consistency for availability. In these systems,
any copy can be read or updated at anytime. This
is important for applications that wish to have
continuous, guaranteed access to data. However,
these read-any, write-any schemes can introduce
inconsistencies during network partition, so
optimistic systems need to provide conflict
detection and resolution schemes.

2.3 Failure Models
A system that fails is not adequately providing the
services for which it was designed. Several types of
failure can occur in distributed file systems.

• Crash failure. Crash failure, or fail-stop, occurs
when a server prematurely halts but was working
correctly until it stopped. An important property
of crash failure is that once the server has halted,
nothing more is heard from the server.

• Network partition. Network partition occurs
when there is a network failure that partitions
replicas into two or more communicating groups.
Communications may still occur within each
group, but no communication can be made
between groups. Recognizing that partition has
occurred can be costly. In addition, it is difficult
to tell the difference between a crashed server
and a partitioned network.

• Byzantine failure. Byzantine failure, also
referred to as arbitrary failure or malicious
failure, was analyzed in depth by Pease ,
Shostak, and Lamport [17, 18]. When a server
experiences Byzantine failure, it can exhibit any
faulty behavior, include arbitrary changes of
state. Moreover, a faulty server may even be
working maliciously in concert with other
servers to produce wrong or misleading answers.
This situation illustrates why security is
considered an important requirement in
distributed systems.

In distributed systems, redundancy is the key
technique for masking failure. As we stated in
Section 1, replication is often used to enhance
reliability in distributed file systems.

3. Related Work
In this section, we describe the research literature
related to our work. First, three popular distributed
file systems are introduced: NFSv3, AFS and Coda.
Following that, other related work is summarized.

3.1 NFSv3
NFSv3 [1], the current NFS version, has been
adopted by many users for distributed file access. In
NFSv3, each client expands its name space by
mounting remote file systems. Access transparency
and location transparency are then provided.
However, a single name space is not supported.
NFSv3 does not provide one-copy semantics, but
guarantees only time bounded data consistency. One
distinguishing feature of NFSv3 is that servers are
stateless. The main advantage is simplicity in server
implementation and failure recovery. The
disadvantage is that more communication messages
are needed between server and client. In NFSv3,
availability is not a design goal. NFSv3 supports
read-only replication.

3.2 AFS
The Andrew File System (AFS) [7, 8, 23] originated
at Carnegie Mellon University. In AFS, multiple
administration domains are defined as cells, each

4

with its own servers, clients, system administrators,
and users. AFS supports consistent file naming on a
global scale. Each cell’s file space entry is
represented as a mount point object in the top level
AFS root directory.

AFS clients cache entire files and directories for
better performance. Servers record the files clients
are caching, then execute callback routines to notify
clients when cached data has changed. This strategy
eliminates superfluous network messages, but
complicates server recovery in the case of failure.
Like UNIX, the AFS consistency model provides that
the “last writer wins” and guarantees that a client
opening a file sees the data stored when the most
recent writer closed the file. This guarantee is hard to
honor in a partitioned network. AFS also supports
read-only replication.

3.3 Coda
Coda [19, 20], a cousin of AFS, achieves its primary
design goal of constant data availability through
server replication and disconnected operation. A
volume is replicated at a set of servers. When a client
opens a file for the first time, it contacts all replicas
to make sure it will access the latest copy and that all
replicas are synchronized. Upon close, upgrades are
propagated to all available replicas.

In the absence of failures, the consistency model of
Coda is identical to that of AFS. In the presence of
failures, Coda sacrifices consistency for availability.
When a Coda client is not connected to any servers,
users can still operate on files in their cache. The
modified files are automatically transferred to a
preferred server upon reconnection. This strategy can
lead to conflicting updates.

The Coda group has investigated automated file and
directory conflict detection and resolution
mechanisms [21, 22]. However, not all conflicts can
be resolved; in some cases, user involvement is
needed to get the desired version of data. The
requirement for clients to check each replica at the
time of cache misses introduces latencies. The
requirement to hoard files on the local machine to
make them available while off-line makes Coda
impractical to use on diskless machines.

3.4 Other Distributed File Systems
WebFS. WebFS [9] is a kernel-resident file system
that provides access to the global HTTP name space.
Upon mounting WebFS, the root directory is defined
to contain all HTTP/WebFS sites that the file system
is initially aware of. Thus, the root directory is
initially empty. Directory entries are created on

reference. The first time an application attempts to
access an HTTP or WebFS site, the system checks
for the presence of (first) a WebFS server, or
(second) an HTTP server. If either server exists, a
directory entry is created in the root
WebFS directory. The name of the directory is set to
the hostname of the remote server. Currently, no
hierarchy is provided in WebFS; all HTTP/WebFS
sites are under the flat name space of the root
directory. For general file sharing, WebFS provides
“last writer wins” consistency, similar to AFS.

UFO. UFO [10] employs the UNIX tracing facility to
intercept system calls and transfers whole files from
FTP and HTTP servers. A global file system is
implemented to allow applications transparent access
to files on remote machines. Names of remote files
can be specified through a URL; through a regular
file name implicitly containing the remote host, user
name, and access mode; or through mount points
specified explicitly in a .uforc file. UFO provides
read and write access to FTP servers and read-only
access to HTTP servers. UFO stores modified files on
the server when they are closed.

Ficus. Ficus [11] is a peer-to-peer file replication
system. It uses a single-copy availability update
policy with a reconciliation algorithm to detect
concurrent updates and restore the consistency of
replicas. In Ficus, replica location information is
stored at each replica. A bit mask is used to indicate
whether a replica holds the replica location
information. Updates to replica location information
are allowed as long as any such replica is available. A
special algorithm called laissez faire is used to
propagate updates. Periodic reconciliation is used to
maintain consistency.

Global Computing. Projects such as Legion [12] and
Globus [13] aim to provide an infrastructure for
global computation, i.e. a world-wide supercomputer.
NFSv4 would be a candidate data access mechanism
to such projects in the sense that it can provide the
global name space, security, consistency, and file
system semantics necessary to support such global
applications.

4. Design
To cope with the requirements of a wide area
environment, the following goals are pursued in our
design.

• A single global name space: One of the
requirements in a wide area environment is a
single name space for all files in the system. A
global name space encourages collaborative
work and dissemination of information, as

5

everyone has a common frame of reference.
Users on any NFS client, anywhere in the world,
should be able to use an identical file name to
refer to a given object.

• Transparency: Transparency is an important
goal of distributed systems. As stated in Section
2.1, there are different forms of transparency. In
this paper, all forms of transparency except
access transparency and persistence transparency
are discussed. An implicit requirement of
location transparency is location independent
naming. Resources are accessed through logical
names, instead of physical locations. Location
independent naming can also provide transparent
migration and replication. To support relocation
transparency, a distributed system should be able
to redirect connected clients to the new resources
transparently. Mutable replication and
transparent concurrency requires a distributed
file system to provide consistency among
replicas. A distributed system should implement
its consistency model in such a way that also
balances performance and availability. Finally, to
provide failure transparency, automatic failure
detection and recovery mechanisms are needed.

• Performance. Good system performance is a
critical goal in this project. In particular, we aim
to make common accesses fast. Previous
research [15, 24–26] has investigated work load
patterns in real file systems that give us insight
in our design. Ordered by expected frequency,
the following cases are considered.

Exclusive read: most often. Support for
replication should not add overhead to the cost of
unshared reads.

Shared read: common. Blaze [15, 24] observes
that files that are used by multiple workstations
make up a significant proportion of read traffic.
For example, in testing, files shared by more
than one user make up more than 60% of read
traffic, and files shared by more than ten users
make up more than 30% of read traffic.
Consequently, a distributed system should
provide performance for shared read accesses
similar to that of the single reader case.

Exclusive write: less common. Previous
work in file system tracing shows that writes
are less common than reads in file system
workloads. When we consider access
patterns for data that need to be replicated in
wide area network, this difference should
become even larger. This allows us to design
a replication file system within which data

updates are more expensive than that in one-
server-copy cases, and still get good
average-case performance.

Write with concurrent access: infrequent. A
longer delay can be tolerated when a user tries to
access an object being updated by another client.

Server failure and network partition: rare.
Special failure recovery procedures can be used
when a server crashes or a network partitions.
During the time of failure, write accesses can
even be blocked to provide strong consistency
without doing much damage to overall
throughput averages.

• Scalability: Successful distributed systems tend
to grow in size. To provide scalability, two
principles are followed in our design. First,
centralized services are avoided. Second, less
functionality is put on server side.

This project does not consider Byzantine failures: a
server is assumed to be good as long as it can
authenticate itself. Furthermore, servers are assumed
to be in good state most of the time. Dramatically
changed server states and network conditions are not
the focus of our design.

4.1 Global Name Space and File System
Migration & Replication
In this project, the NFSv4 protocol is extended to
provide a single shared global name space. By
convention, a special directory /nfs is defined as
the global root of all NFSv4 file systems. To an
NFSv4 client, /nfs appears as a special directory,
which holds recently accessed file system mount
points. Entries under /nfs are mounted on demand.
Initially, /nfs is empty. The first time a user or
application accesses any NFS file system, the
referenced name is forwarded to a daemon that
queries DNS to map the given name to one or more
file server locations, selects a file server, and mounts
it at the point of reference.

The format of reference names under /nfs directory
follows Domain Name System [REF] conventions.
We use a TXT Resource Record (RR) [4, 5] for
server location information. A RR in DNS can map a
reference name to multiple file servers, in this case
replicas holding the same data. This provides for
transparency in our file system migration and
replication implementation. When a file system is
replicated to a new server, the administrator needs
only to update its DNS server to add a mapping from
the file system reference name to the new NFS server
location. Similarly, when a file system is migrated to

6

another NFS server, the old mapping is updated to
point to the new server. In addition to file system
locations, other information such as mount options
can also be carried in DNS RRs.

4.2 File System Name Space and Directory
Migration & Replication
The file system name space provided by an NFS
server is called a pseudo file system. A pseudo file
system glues all the rooted hierarchies exported by an
NFS server into a single tree rooted at /. In this way,
portions of the server name space that are not
exported are bridged into one exported file system so
that an NFSv4 client can browse seamlessly from one
export to another. This feature is an essential element
for support of a global name space, and reflects the
intention of the NFSv4 protocol designers to provide
support for it.

Directory migration and replication among different
NFSv4 file systems is implemented by exporting a
directory with an attached reference string on servers
serving that directory. A reference string includes
information on how to get directory replica locations.
Four types of reference string are implemented in our
prototype: LDAP, DNS, FILE and SERVER
REDIRECT.

• LDAP. The format of an LDAP reference string
is ldap://ldapserver/lookup-key [-
b searchbase] [-p ldapport]. The
LDAP server stores replica location records that
can be queried with the lookup-key. A replica
location record includes the server name holding
that replica, the directory path where the replica
located, and the server mount options. The
lookup-key needs only to be unique in the LDAP
server, which can be guaranteed when the
mapping entry is created.

• DNS: the format of a DNS reference string is
dns://lookup-name. The lookup-name
format follows domain name conventions. The
way DNS carries replica location information is
the same as described in Section 4.1.

• FILE: the format of FILE reference string is
file://pathname/lookup-key. The
pathname gives the path to a file that contains the
stores a lookup-key for replica location
mappings. The file should be stored in a place
accessible to NFS clients, e.g., the parent of the
replicated directory.

• SERVER REDIRECT: SERVER REDIRECT
lookup method is used to support directory
migration and relocation. As we will see in

Section 4.4, it is also used to support concurrent
accesses in mutable replications. The format of a
SERVER REDIRECT reference string is
server://hostname:/path [mount-
options], where hostname:/path gives the
location of the replicated directory.

When a client first accesses a replicated directory, the
reference string of the directory is sent to the client.
With the reference string, the client can query the
replica locations of that directory, select a nearby
replica and continue its access.

Support for multiple lookup methods allows
organizations to maintain replica location information
as they desire. No centralized name service is
required. Replica location querying and selection are
left to clients. These choices promote scalability.

4.3 FS_LOCATIONS Attribute
FS_LOCATIONS is a recommended attribute in the
NFSv4 protocol. According to the protocol
interpretation, the FS_LOCATIONS attribute is
intended to support file system migration and read-
only replication. In the case of migration, an
attempted client access might yield an
FS_LOCATIONS attribute that gives a new location.
For replication, a client’s first access of a file system
might yield the FS_LOCATIONS attribute, which
provides alternative locations for the file system.

The FS_LOCATIONS attribute allows clients to find
migrated/replicated data locations dynamically at the
time of reference. In this project, we also use
FS_LOCATIONS attribute to communicate
migration and replication location information
between servers and clients. However, the way we
use the attribute is different from that stated in the
protocol. First, in our design, the FS_LOCATIONS
attribute is used to provide reference strings of
replica locations, instead of real locations. It is the
client’s responsibility to lookup replica locations with
reference strings. Second, we use the
FS_LOCATIONS attribute to provide directory
migration and replication, instead of the coarse-
grained file system migration and replication. Finally,
we use the FS_LOCATIONS attribute to support
concurrent accesses in mutable replications, which
we describe in detail in the next section.

4.4 Mutable Replication
The scheme described in the last two subsections can
efficiently support read-only replication. However, to
support mutable replication, we also need a
mechanism to distribute updates whenever a replica
is modified. As analyzed in Section 2.2, a distributed

7

file system also needs to guarantee some kind of
consistency during updates. We considered several
mechanisms during our design.

• Reader checks. One strategy is for a reader to
check all replicas on every read request to be
sure it sees the most up-to-date data. This
solution can guarantee one-copy serializability,
but adds substantial overhead to normal read
requests.

• Replica heartbeat: By having replicas send
periodic heartbeat messages, the system allows a
narrow window of inconsistency but can
guarantee data consistency after the defined time
bound. With this method, the system can
automatically discover and recover from failure.
However, heartbeat messages add undesirable
overhead and network traffic to the system even
when all replica servers are working properly.

• Server redirection. The strategy that we have
adopted provides one-copy serializability at little
cost to exclusive or shared readers. When a client
opens a file for writing, the selected server
disables replication by contacting all other
servers replicating the file and instructing them
to redirect all accesses to itself. We support two
consistency models that differ only in the event
of the failure of a replication server. We offer
strict, one-copy serializability at the cost of
blocking all access while the failed server is
under repair. By relaxing the consistency model
to write serializabilty, we can allow continued
operation in the majority partition. Details are
presented in the following subsections.

4.4.1 File Updates
We accomplish consistent replication by redirecting
all accesses to a single server when a file is opened
for write. When a client opens a file for writing, the
relevant server instructs all other replication servers
for that file to redirect subsequent accesses to itself.
When the file is closed, the updated file is propagated
to the redirected servers and file replication is re-
enabled.

Figure 1: File modification. 1. A client issues an open request to
a replication server. 2. This server instructs other replication
servers to redirect requests to itself, making it the primary server
for the file. 3. Replication servers comply. 4. Replication servers
acknowledge the request. 5. The primary server acknowledges the
open request. 6. The client issues a close request. 7. The primary
server instructs the redirected servers to re-enable replication. 8.
The redirected servers obtain an update from the primary server. 9.
The redirected servers disable redirection. 10. The (formerly)
redirected servers acknowledge the request to re-enable replication.
11. The close request is acknowledged.

While the file is open for writing, the server issuing
replication disabling messages behaves as a primary
server. Client access requests sent to servers are
redirected to the primary server. As mentioned in
Section 4.2, a special type of reference string, Server
Redirect, is utilized for server redirection. The
procedure is illustrated in Figure 1. Here we assume
files are opened in asynchronous mode. We do not
support files opened for synchronous access; we
discuss this case in Section 8.

4.4.2 Directory Updates
Directory modifications include the creation and
removal of entries in a directory, entry renaming, etc.
Unlike file writes, directory updates do not involve
much elapsed time between start and finish, and
clients tend to expect transactional behavior.
Therefore, we decide not to use server redirection to
support concurrent directory access while an update
is in progress. Instead, when a server receives a
directory update request from a client, the server
disables replication of the directory at other servers,
serves the request, and then re-enables replication. If
another replica receives an access request for the
directory being updated, that request is blocked until
the directory replication is re-enabled. The directory
modification procedure is shown in Figure 2.

8

Figure 2: Directory modification. 1. A client issues a directory
update request to a replication server. 2. This server instructs other
replication servers to block any access to this directory. 3.
Replication servers comply. 4.. Replication servers acknowledge
the request. 5. The primary server processes the directory update
request. 6. The primary server instructs the other servers to re-
enable access. 7. The other servers obtain the update from the
primary server. 8. The redirected servers restore accessto the
directory. 9. The other servers acknowledge the request to re-
enable replication. 10. The directory update request is
acknowledged.

4.4.3 Special cases
Conflict. Two or more servers may try to disable
replication of a file or directory at the same time. The
result is that some replicas are disabled by one server,
while some are disabled by other servers. In the
absence of failure or partition, conflict is always
apparent to the conflicting servers. We resolve the
conflict by having conflicting servers cooperate: the
server that has disabled more replicas is allowed to
continue; the server that has disabled fewer replicas
hands its collection of disabled replicas to the first
server. It is easy to see that this approach converges.
However, this simple strategy may have drawbacks
when used in a WAN, so we plan to explore other
leader election schemes in future work.

Failure. We can guarantee one-copy serializability
when all replicas are in working order. However,
failure complicates matters. A server might be unable
to ensure redirection at all other replicas when there
is a crashed server or network partition. Although
they are hard to distinguish from afar, there is an
essential difference: a crashed server can no longer
response to any clients, but a partitioned server can
still serve client requests that originate in the
partition. Consequently, replication servers in a
minority partition may unwittingly serve stale data.
To address this problem, we support two options that
offer different consistency guarantees and
availabilities.

The first option provides write serializability. When
failure occurs, an automatic failure detection and
resolution program (FDR) is engaged. If the primary

server crashes while serving a writing client, the
client notice the server failure and reports it to FDR.
FDR determines the state of all replication servers. If
replication is disabled everywhere, FDR re-enables
replication in available replicas and informs the client
of the request failure. In this case, the client must
reconnect to another replica and reissue the failed
operation. If replication is enabled on some servers,
FDR will select an enabled replica as the primary
server, redirect the client to the new server and
inform other replicas to synchronize with the selected
server. If some other server fails, the primary server
will detect the failure and report it to FDR. That
replica will be removed from the replication set and
the system can proceed.

For one-copy serializability, we use a different
strategy. If the primary server crashes while serving
a writing client, the procedure is as described above:
verify that replication is disabled everywhere, find a
new primary, and inform the client. similar to the
first option. However, if any other replication server
fails, all replication servers enter a read-only state.
The system returns to normal state after the failed
server is repaired or with administrator involvement.

5. Implementation
In this section, we report on a prototype
implementation of the design described in Section 4.
First we a describe a modified Automount daemon,
used to automatically mount and unmount NFSv4
servers. Then we discuss our implementation of
replication support for NFSv4. We used Linux 2.5.68
throughout.

5.1 Automount
Automount and AutoFs are tools that allow users of
one machine to mount different file systems
automatically at the moment they are needed.
Automount, often referred as AMD, is a user level
daemon that installs AutoFs mount points and
associates an automount map with each AutoFs
mount point. AutoFs is a file system implemented in
the kernel. AutoFs monitors attempts to access a
subdirectory within a designated directory and
notifies the AMD daemon to perform mounts or
unmounts there. Upon receiving an mount request
from the kernel, the daemon uses the map to locate a
file system, which it then mounts at the point of
reference within the AutoFs file system. If the
mounted file system is not accessed for a specified
amount of time, AutoFs instructs the daemon to
unmount it.

Although Automount supports numerous mapping
methods, no support for DNS mapping, required for

9

this project, is provided in the current
implementation, so we extended the Automount
daemon to support a DNS mapping method. The
global root directory of NFSv4, /nfs by convention,
is made an AutoFs mount point with DNS mapping
as the associated automount map method. We also
made changes to provide communication between the
NFSv4 client and the Automount daemon. When the
NFSv4 client receives a reference string from the
connected server, it passes the reference string to the
modified Automount daemon. After receiving the
request, the daemon uses the mapping method
indicated in the reference string to locate one or more
replicas. It then selects and mounts a replica.

5.2 Exportfs
NFSv4 uses exportfs utilities on the server side to
export a directory. In the kernel, an export structure is
maintained for each current accessed export. We
extended the exportfs interface so that the reference
string of a replicated directory can be passed into the
kernel. The reference string is maintained in the
corresponding export structure. When an NFS client
encounters an export with an attached reference
string, the server notifes the client and sends the
reference string in FS_LOCATIONS attribute. A new
option is also provided in the exportfs interface,
allowing users to set required consistency for
exported data.

5.3 Mutable Replication Implementation
In mutable replication, a server needs to know the
replica list before it issues a replication disabling
procedure. Our implementation maintains this
information dynamically, using rpc-cache. When a
server wants to send replication disabling messages,
it calls cache lookup with the reference string as the
lookup key. If there is a cache hit, the cached value is
returned. If a cache miss occurs, an up-call is made to
a user-level handler, which performs the lookup and
adds the queried data to the cache.

We use RSYNC to synchronize replicas with the
primary server during update propagation. RSYNC is
an open source utility that provides fast incremental
file transfers. It uses the “rsync algorithm”, which
allows RSYNC to transfer just the differences
between two sets of files across the network. Tridgell
[14] gives details about the update algorithm.

In our system, when a replica receives a replication
enabling message from the primary server, an up-call
request is send to a user-level daemon, which
executes RSYNC to update the object. The advantage
of using RSYNC is the simplicity of implementation.

The disadvantage is the performance cost introduced.
This problem is analyzed in detail later.

RPC procedure calls are used to transfer replication
disabling and enabling messages among replicas. In
our prototype implementation, these messages are
sent serially by the primary server.

6. Evaluation
Having describing the system architecture and
implementation, we now present performance data
collected with a prototype implementation. Our
testing environment is extremely simple, and perhaps
a bit naive. All measurements were made in a local
network. Replication performance is tested with three
replicas. The performance investigation in wide area
environment and with more replicas is left for future
work.

In this paper, all data were obtained by using an
AMD-K6 400MHz with 128MB of memory as client,
and an IBM NetVista with one Intel 1.8GHz
Pentium4 processor and 128MB memory as the
primary server. One replica used in the testing,
referred to as Big Replica below, is a Dell
PowerEdge2650, with two Intel 1.8GHz Xeon
processors and 1G of memory. Another replica is a
PowerEdge2650 with one Intel 1.8GHz Xeon and
512MB memory, referred to as Small Replica. The
client and the primary server are connected through a
Gigabit router and a 100Mbps switch. The three
servers are connected by a 100Mbps switch. All
machines run Linux 2.5.68. The data were measured
by running gettimeofday, which has microsecond
resolution in Linux 2.5.68.

6.2 Results
Table 1 lists the NULL Remote Procedure Call
(NULL RPC) response times related to the
evaluations presented in this part. These are useful in
helping to assess subsequent performance
measurements.

NULL RPC Time (ms)

Client ‡ Primary Server 482 (0.008)

Primary Server ‡ Big Replica 264 (0.009)

Primary Server ‡ Small Replica 261 (0.01)

Table 1: NULL RPC response time. The client has a 400MHz
AMD-K6 processor, with 128MB memory. The Primary Server is
IBM NetVista with one Intel 1.8G P4 processor and 128MB
memory. The Big Replica is a Dell PowerEdge2650 with two Intel
1.8G XEON processors and 1.0G memory. The Small Replica is a
Dell PowerEdge2650 with one Intel 1.8GHz XEON and 512MB
memory. All machines are within a local network. The client and
the primary server are connected through a Gigabit router and a

10

100Mbps switch. The three servers are connected by a 100Mbps
switch. The numbers presented here are mean values from five
trials of each experiment. Figures in parentheses are standard
deviations.

Table 2 presents the different query times used to
lookup replica locations from clients. As shown in
the table, SERVER REDIRECT requires the least
time, as the client does not need to process any query
in this case. Among the other three methods, DNS
TXT RR is the fastest with only around 1.5 ms query
time. LDAP and FILE are a little slower with 12 ms
and 13ms query time respectively, which are still
acceptable since a client needs to query replica
locations only on its first reference.

Query Method Time (ms)

DNS TXT RR 1.49 (0.006)

LDAP 12.3 (0.8)

FILE 13.1 (0.7)

SERVER REDIRECT 0.007 (0.001)

Table 2: Lookup time for different querying methods. This
table shows the lookup time of different querying methods at the
client side. The numbers presented here are mean values from five
trials of each experiment. Figures in parentheses are standard
deviations. The DNS server and LDAP server used for querying
are within the same local network as the client. The size of the file
storing replica location information is 248 bytes.

Table 3 demonstrates the time spent in each phase
when a client first accesses an NFSv4 file system in
the provided global name space. As shown in the
table, the mount phase takes the most time. This is
not surprising as client and server need to mutually
authenticate during mount. The total response time
seen by the client is approximately 0.04 second. This
can be used to estimate the response time when the
client first accesses a migrated or replicated
directory, which will vary slightly when using
different query methods. Although the response time
will increase in a WAN, we judge this overhead to be
acceptable as a client experiences such delay only at
the first time of reference.

Phase Time (ms)

Upcall 1.28 (0. 06)

Replica List Query (DNS) 1.49 (0.006)

Mount 37.5 (0.4)

Total 40.2 (0.4)

Table 3: First access. This table shows the time spend at the client
side when it first accesses a file system within the provided global
name space. The numbers presented here are mean values from
five trials of each experiment. Figures in parentheses are standard

deviations. These measurements can also be used to estimate the
response time when the client first accesses a migrated or
replicated directory, which will vary slightly when using different
query methods

Table 4 compares the response time for normal open
and that for redirected open. As shown, redirected
open is more than ten times slower than normal open.
However, measurements and simulations in [15] [24]
and [25] show that files are rarely write-shared in real
workload, so that redirected open will not occur
often.

Replica list query Time (ms)

Normal Open 5.41 (0.06)

Redirected Open 62.7 (0.7)

Table 4: Normal open and redirected open time. This table
shows the response time of normal open and redirected open seen
by the client. The redirected open refers to the situation when the
client wants to access a file being written at another server
(primary server). In this case, the client is notified to connect to the
primary server for file accessing. The numbers presented here are
mean values from five trials of each experiment. Figures in
parentheses are standard deviations.

The replica list query time spent at server side is
listed in Table 5. This proves that caching can
appreciably reduce query time

Replica list query Time (ms)

Cache miss 14.1 (1)

Cache hit 0.004 (0.001)

Table 5: Replica list query time at server side. This table shows
the different replica list query time in cache miss and cache hit at
the server side. It is only used by mutable replicas. The querying
method used in the testing is DNS TXT RR. The numbers
presented here are mean values from five trials of each experiment.
Figures in parentheses are standard deviations. The query method
used in this testing is DNS RR.

Tables 6 and 7 present the response time of file open
for writing and file close after writing with different
replica sets. When opening a file, disabling
replication introduces a small overhead. Much more
delay is added in file close after writing. Table 7
shows that the update distribution phase takes the
most time in close procedure.

Time for each phase (seconds)
Replicas

Disable Replication
Client

Response Time

(P) 0 0.00349 (0.04)

(P, B) 0.000421 (0.000006) 0.00392 (0.008)

(P, S) 0.000413 (0.000005) 0.00387 (0.005)

11

(P, B, S) 0.000503 (0.00005) 0.00398 (0.05)

Table 6: File open for writing. This table shows the
times spend in each phase during file open for
writing operations with different replica sets. The
numbers presented here are mean values from
five trials of each experiment. Figures in
parentheses are standard deviations.

Time for each phase (seconds)

Replicas Update
Distribution

Enable
Replication

Client
Response

Time

(P) 0 0
0.00413
(0.00001)

(P, F) 0.463 (0.009) 0.000372
(0.000002)

0.467
(0.01)

(P, S) 0.644 (0.02) 0.000386
(0.000009)

0.649
(0.03)

(P, F, S) 0.687 (0.04) 0.000461
(0.00004)

0.692
(0.04)

Table 7: File close after writing. This table shows the response
times of file close after writing operations with different replica
sets. The data were collected by appending 10 bytes to a 1M size
file. Update distribution phase refers to the stage during which
each replica pulls update from the primary server. This is
implemented in the prototype by running rsync with ssh as the
remote shell program.

Table 8 shows the time spent in each phase during
three common directory updates. Similar to file close
after writing, most of the overhead is added by
update distribution. We expect to reduce this
overhead by investigating more efficient update
distribution methods. We discuss this further in the
next section.

7. Discussion
Synchronous writes. Earlier, we assumed clients
write files asynchronously. This assumption is
violated if an application opens a file in synchronous
mode. In this case, if we use the same strategy as
described in Section 4.2, and if the primary server
fails before it distributes updates to other replicas, it
is difficult for the client to redo write operations it
already made at the failed server, because in
synchronous mode the client is assured that the
modified data has been stored in the system reliably
after a write returns. But we may use another
strategy, in which the primary server distributes
updates each time it receives a commit request from
the synchronous client. This will increase the
response time for write operations, which is the cost
paid for synchronous writing.

Update distribution. As shown in Tables 7 and 8,
update distribution takes the most time during file
close after writing and directory updates. Although it
is not surprising that update distribution introduces
additional delay to the total response time, we should
expect a smaller overhead in this phase. We
speculated the high overhead seen in update
distribution is due to the use of RSYNC. To gauge
this, we measured the time spent by RSYNC when
synchronizing identical directories and files. In this
case, no updates need to be made at the replicas. The
collected data are shown in Table 9.

Synchronization
Unit Replicas Time (seconds)

F ‡ P 0.270 (0.001)
Directory

S ‡ P 0.444 (0.003)

F ‡ P 0.245 (0.02)
File

S ‡ P 0.422 (0.02)

Table 9: Time used by rsync to synchronize the same two
objects. This table shows the times spend by rsync when
synchronizing the same two directories and/or files. In these cases,
no updates are made at each replica. The directory used in this
testing is the same as that used in Table 8, which includes four files
and three directories.

12

Time for each phase (seconds)

Operations Replicas

Disable Replication
Update

Distribution Enable Replication
Client Response

Time

(P) 0 0 0 0.00813 (0.0002)

(P, F) 0.000413 (0.00002) 0.321 (0.02) 0.000366 (0.00002) 0.330 (0.02)

(P, S) 0.000417 (0.00001) 0.500 (0.02) 0.000372 (0.00001) 0.510 (0.02)

File
Rename

(P, F, S) 0.000494 (0.00003) 0.556 (0.02) 0.000579 (0.00002) 0.566 (0.02)

(P) 0 0 0 0.00852 (0.0001)

(P,F) 0.000413 (0.00001) 0.288 (0.02) 0.000376 (0.00001) 0.298 (0.02)

(P, S) 0.000402 (0.00003) 0.459 (0.02) 0.000374 (0.00001) 0.474 (0.03)

MakeDir

(P, F, S) 0.000474 (0.00004) 0.492 (0.04) 0.000442 (0.00001) 0.505 (0.04)

(P) 0 0 0 0.00750 (0.0003)

(P,F) 0.000384 (0.00002) 0.280 (0.02) 0.000397 (0.00003) 0.296 (0.02)

(P, S) 0.000393 (0.00002) 0.451 (0.02) 0.000374 (0.00001) 0.462 (0.02)

RemoveDir

(P, F, S) 0.000477 (0.00004) 0.478 (0.02) 0.000456 (0.00003) 0.492 (0.02)

Table 8: Three common directory updates. This table shows three common directory update operations: File Renaming, MakeDir and
RemoveDir, with different replica sets. Data shown in File Renaming operation were collected by renaming a 1K size file within a directory.
Update distribution phase refers to the stage during which each normal replica pulls update from the primary server. This is implemented in the
prototype by running RSYNC with SSH as the remote shell program.

As shown in Table 9, even when no updates are made
at each replica, a long delay is still seen. This
includes the time spent for SSH authentication and
the cost to run the RSYNC algorithm. We also note
that the figures shown in Table 9 for directory
synchronization are very close to the update
distribution times shown in Table 8. This suggests the
real time needed by update distribution may be
considerably less. A bigger difference is seen for file
synchronization. We speculate that this is caused by
the file update strategy used in RSYNC. That is,
when a file needs to be updated, RSYNC reconstructs
the file instead of making modifications directly to
the original file. Thus when small modifications are

made to a large file, as the case shown in our
experiments, extra delay is introduced.

The above analysis indicates the need for a better
update distribution mechanism in the system
implementation. RSYNC was not designed for
operations as used in our prototype; we employed it
as the update distribution mechanism in the prototype
as an expedient, simplifying our implementation (and
saving the time and effort of implementing our own
update mechanism). In the future, we plan to explore
other mechanisms to distribute updates. For example,
having the primary server propagate updates with a
parallel RPC [27] is an attractive option.

13

Tables 7 and 8 also show that update speed is limited
by the slowest replica in the system. Here, the
slowest replica refers to the replica that takes the
longest time to get updates from the primary server.
This results from our design decision that a primary
server has to wait until it gets replies from all
available replicas in the system. An alternative
strategy that can help reduce total response time is to
further relax the consistency model and allow a
primary server to reply to its client after a defined
number of replicas have finished the update. We plan
to explore this idea further in our future work.

Performance testing. System performance in a
wide area environment and with more replicas will
be measured in the future. We are investigating
using network emulation tools, such as NistNet, to
simulate wide area network conditions.

Client caching. Clients can cache reference strings to
replica location mappings to reduce replica location
query time. We left this implementation for future
work.

Replica selection. Replicas can be selected based on
several criteria. For example, servers on the same
subnet can be given the strongest preference, with
servers on the local net given the second strongest
preference. Among servers equally far away,
response times can be used to determine a preference.
Replica selection can be also policy based.
Additionally, the LDAP server holding a replica list
can monitor requests to that replica list and give a
recommendation list for load balance purpose.

Automatic failure detection and resolution. As
described in Section 4.3.3, an automatic failure
detection and resolution program is needed when
failure occurs. We left its detailed design and
implementation to future work.

8. Conclusion
This paper presents the design and implementation of
support for migration, mutable consistent replication,
and a global name space for NFSv4. By convention,
any file or directory name beginning with /nfs is
part of this name space. File system migration and
replication are supported through DNS resolution.
Directory migration and replication are provided by
making use of FS_LOCATIONS attribute. For
mutable replication, server redirection is used to
provide concurency and consistency during replica
updates. Strong consistency is guaranteed when the
system is free of failures. In the case of network
partition, two kinds of consistency can be provided:
one-copy serializability and write serializability,
which allow different availabilities.

9. Reference
[1] Sun Microsystems, Inc., NFS: Network File
System Protocol Specification, RFC 1094, March
1989.

[2] Sun Microsystems, Inc., Design and
Implementation of the Sun Network File System, in
USENIX Summer Conference Proceedings, June
1985.

[3] Sun Microsystems, Inc., NFS Version 4 Protocol,
RFC 3010, Dec. 2000.

[4] P. Mockapetris, DOMAIN NAMES -
CONCEPTS AND FACILITIES, RFC 1034, Nov.
1987.

[5] P. Mockapetris, DOMAIN NAMES –
IMPLEMENTATION AND SPECIFICATION, RFC
1035, Nov. 1987.

[6] ISO, “Open distributed processing reference
model” International Standard ISO/IEC IS 10746,
1995.

[7] J. Howard. An overview of the Andrew file
system. In Proceedings of the USENIX Winter
Technical Conference, Dallas, TX, February 1988.

[8] Coulouris, G., Dollimore, J., Kindberg, T,
Distributed Systems, 2001, ISBN 0201-61918-0

[9] A. M. Vahdat, P. C. Eastham, and T. E.
Anderson. Webfs: A global cache coherent file
system. Technical report, University of California,
Berkeley, 1996.

[10] A. D. Alexandrov, M. Ibel, K. E. Schauser, and
C. J. Scheiman. Extending the operating system at the
user level: the ufo global file system. In 1997 Annual
Technical Conference on Unix and Advanced
Computing Systems (USENIX ’97), January 1997.

[11] Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald J. Popek, and Dieter
Rothmeier. Implementation of the Ficus replicated
file system. In USENIX Conference Proceedings,
pages 63-71, Anaheim, CA, June 1990.

[12] A. Grimshaw, A. Nguyen-Tuong, and W. Wulf.
Campus-Wide Computing: Results Using Legion at
the University of Virginia. Technical Report CS-95-
19, University of Virginia, March 1995.

[13] I. Foster and C. Kesselman. Globus: A
Metacomputing Infrastructure Toolkit. In Proc.
Workshop on Environments and Tools, 1996.

[14] A. Tridgell. Efficient algorithms for sorting and
synchronization. PhD thesis, The Australian National
University, 1999.

14

[15] M. Blaze. Caching in Large-Scale Distributed
File Systems. PhD thesis, Princeton University,
January 1993.

[16] Susan B. Davidson, Hector Garcia-Molina:
"Consistency in Partitioned Networks", Computing
Surveys 17(3), pp. 341–370, 1985.

[17] M. Pease, R. Shostak, and L. Lamport,
"Reaching agreement in the presence of faults,"
Journal of the ACM, vol. 27, pp. 228–234, Apr.
1980.

[18] L. Lamport, R. Shostak and M. Pease. The
Byzantine Generals Problem. ACM Trans. on Prog.
Lang. and Systems 4, 3 (July 1982), 382-401.

[19] J.J. Kistler and M. Satyanarayanan.
Disconnected operation in the coda file system. ACM
Transactions on Computer Systems, 10(1):3–25,
February 1992.

[20] Satyanarayanan, M., Kistler, J., Kumar, P.,
Okasaki, M., Siegel, E., and Steere, D. Coda: A
Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on
Computers 39, 4 (April 1990).

[21] Kumar, P., and Satyanarayanan, M. Supporting
Application-Specific Resolution in an Optimistically
Replicated File System. In Proceedings of the 4th
IEEE Workshop on Workstation Operating Systems
(Napa, CA, October 1993).

[22] Kumar, P., and Satyanarayanan, M. Log-based
Directory Resolution in the Coda File System. In
Proceedings of the Second International Conference
on Parallel and Distributed Information Systems
(San Diego, CA, January 1993).

[23] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West. Scale
and Performance in a Distributed File System. ACM
Transactions on Computer Systems, 6(1):51--81,
February 1988.

[24] Matt Blaze. NFS Tracing by Passive Network
Monitoring. In the Proceedings of the Winter
USENIX Conference, pages 333--343. USENIX
Association, Jan 1992.

[25] Mary G. Baker, John H. Hartman, Michael D.
Kupfer, Ken W. Shirriff, John K. Ousterhout,
Measurements of a distributed file system,
Proceedings of the thirteenth ACM symposium on
Operating systems principles, p.198-212, October 13-
16, 1991, Pacific Grove, California, United States.

[26] Drew Roselli, Jacob R. Lorch, and Thomas E.
Anderson. A comparison of file system workloads.

USENIX Annual Technical Conference (San Diego,
CA, 18--23 June 2000.

[27] Satyanarayanan, M., Siegel, E.H. Parallel
communication in a large distributed environment.
IEEE Transactions on Compute. Mar. 1990, Vol. 39,
No. 3.

[28] R. Sidebotham. Volumes –- the Andrew file
system data structuring primitive. In European UNIX
System User Group Autumn '86 Conference
Proceedings, pages 473–80, Manchester, UK,
September 1986

